1
|
Mir RH, Maqbool M, Mir PA, Hussain MS, Din Wani SU, Pottoo FH, Mohi-Ud-Din R. Green Synthesis of Silver Nanoparticles and their Potential Applications in Mitigating Cancer. Curr Pharm Des 2024; 30:2445-2467. [PMID: 38726783 DOI: 10.2174/0113816128291705240428060456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 09/05/2024]
Abstract
In recent years, the field of nanotechnology has brought about significant advancements that have transformed the landscape of disease diagnosis, prevention, and treatment, particularly in the realm of medical science. Among the various approaches to nanoparticle synthesis, the green synthesis method has garnered increasing attention. Silver nanoparticles (AgNPs) have emerged as particularly noteworthy nanomaterials within the spectrum of metallic nanoparticles employed for biomedical applications. AgNPs possess several key attributes that make them highly valuable in the biomedical field. They are biocompatible, cost-effective, and environmentally friendly, rendering them suitable for various bioengineering and biomedical applications. Notably, AgNPs have found a prominent role in the domain of cancer diagnosis. Research investigations have provided evidence of AgNPs' anticancer activity, which involves mechanisms such as DNA damage, cell cycle arrest, induction of apoptosis, and the regulation of specific cytokine genes. The synthesis of AgNPs primarily involves the reduction of silver ions by reducing agents. Interestingly, natural products and living organisms have proven to be effective sources for the generation of precursor materials used in AgNP synthesis. This comprehensive review aims to summarize the key aspects of AgNPs, including their characterization, properties, and recent advancements in the field of biogenic AgNP synthesis. Furthermore, the review highlights the potential applications of these nanoparticles in combating cancer.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, Kashmir, India
| | - Mudasir Maqbool
- Pharmacy Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab 143001, India
| | - Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, Rajasthan, India
| | - Shahid Ud Din Wani
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir 190001, India
| |
Collapse
|
2
|
Semeraro P, Giotta L, Talà A, Tufariello M, D'Elia M, Milano F, Alifano P, Valli L. A simple strategy based on ATR-FTIR difference spectroscopy to monitor substrate intake and metabolite release by growing bacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123031. [PMID: 37392540 DOI: 10.1016/j.saa.2023.123031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) difference spectroscopy has been employed for a variety of applications spanning from reaction mechanisms analysis to interface phenomena assessment. This technique is based on the detection of spectral changes induced by the chemical modification of the original sample. In the present study, we highlight the potential of the ATR-FTIR difference approach in the field of microbial biochemistry and biotechnology, reporting on the identification of main soluble species consumed and released by growing bacteria during the biohydrogen production process. Specifically, the mid-infrared spectrum of a model culture broth, composed of glucose, malt extract and yeast extract, was used as background to acquire the FTIR difference spectrum of the same broth as modified by Enterobacter aerogenes metabolism. The analysis of difference signals revealed that only glucose is degraded during hydrogen evolution in anaerobic conditions, while ethanol and 2,3-butanediol are the main soluble metabolites released with H2. This fast and easy analytical approach can therefore represent a sustainable strategy to screen different bacterial strains and to select raw and waste materials to be employed in the field of biofuel production.
Collapse
Affiliation(s)
- Paola Semeraro
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, Lecce, Italy
| | - Livia Giotta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, Lecce, Italy.
| | - Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | - Maria Tufariello
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), UOS Lecce, Lecce, Italy
| | - Marcella D'Elia
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italy
| | - Francesco Milano
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), UOS Lecce, Lecce, Italy
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | - Ludovico Valli
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, Lecce, Italy
| |
Collapse
|
3
|
Hajimiri H, Safiabadi Tali SH, Al-Kassawneh M, Sadiq Z, Jahanshahi-Anbuhi S. Tablet-Based Sensor: A Stable and User-Friendly Tool for Point-of-Care Detection of Glucose in Urine. BIOSENSORS 2023; 13:893. [PMID: 37754126 PMCID: PMC10526991 DOI: 10.3390/bios13090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
The colorimetric detection of glucose in urine through enzymatic reactions offers a low-cost and non-invasive method to aid in diabetes management. Nonetheless, the vulnerability of enzymes to environmental conditions, particularly elevated temperatures, and their activity loss pose significant challenges for transportation and storage. In this work, we developed a stable and portable tablet sensor as a user-friendly platform for glucose monitoring. This innovative device encapsulates glucose oxidase and horseradish peroxidase enzymes with dextran, transforming them into solid tablets and ensuring enhanced stability and practicality. The enzymatic tablet-based sensor detected glucose in urine samples within 5 min, using 3,3',5,5'-tetramethylbenzidine (TMB) as the indicator. The tablet sensor exhibited responsive performance within the clinically relevant range of 0-6 mM glucose, with a limit of detection of 0.013 mM. Furthermore, the tablets detected glucose in spiked real human urine samples, without pre-processing, with high precision. Additionally, with regard to thermal stability, the enzyme tablets better maintained their activity at an elevated temperature as high as 60 °C compared to the solution-phase enzymes, demonstrating the enhanced stability of the enzymes under harsh conditions. The availability of these stable and portable tablet sensors will greatly ease the transportation and application of glucose sensors, enhancing the accessibility of glucose monitoring, particularly in resource-limited settings.
Collapse
Affiliation(s)
| | | | | | | | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (H.H.); (S.H.S.T.); (M.A.-K.); (Z.S.)
| |
Collapse
|
4
|
Khmaissa M, Hadrich B, Ktata A, Chamkha M, Sayari A, Fendri A. The response surface methodology for optimization of Halomonas sp. C2SS100 lipase immobilization onto CaCO 3 for treatment of tuna wash processing wastewater. Prep Biochem Biotechnol 2022:1-13. [PMID: 36369762 DOI: 10.1080/10826068.2022.2142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An immobilized enzyme could exhibit selectively modified physicochemical properties, and it might offer a better environment for the enzyme activity. In this study, the immobilization yield of crude Halomonas sp. lipase was optimized to improve its stability. Thanks to its high adsorption capacity, CaCO3 has been chosen as support for the immobilization process. Furthermore, response surface methodology (RSM) was used to determine optimal conditions for the immobilization of the bacterial lipase. Five tested factors (enzyme solution, support amount, time, temperature, and acetone volume) were optimized applying a central composite design of RSM. The maximum yield of lipase immobilization was improved to 96%. Furthermore, a biochemical characterization proved a significant improvement of the immobilized lipase stability. The immobilized enzyme is more stable at extreme pH values and high temperatures than the free one. We also tested the reusability of the immobilized lipase by evaluating the recovery of the support using simple filtration. Thanks to its high stability, the immobilized lipase was invested in an effective treatment of tuna wash processing wastewater. The oil biodegradation efficiency was established at 81.5% and was confirmed by Fourier transformation infrared spectrometry. Likewise, the biological oxygen demand values were reduced which makes a possible reduction of the wastewater pollution degree.
Collapse
Affiliation(s)
- Marwa Khmaissa
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh, Saudi Arabia
| | - Ameni Ktata
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010141] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metallic nanoparticles are a new class of materials with applications in medicine, pharmaceutical and agriculture. Using biological, chemical and physical approaches, nanoparticles with amazing properties are obtained. Copper is one of the most-found elements and plays an important part in the normal functioning of organisms. Coper nanoparticles have superior antibacterial properties when comparing them to present day antibiotics. Moreover, apart from their antibacterial role, antifungal, antiviral and anticancer properties have been described. Although the mechanism of actions is not completely understood, copper nanoparticles can become a viable alternative in fighting multi-resistant bacteria strains. We hereby review the already existing data on copper nanoparticle synthesis, effects and mechanisms of action as well as toxicity.
Collapse
|
6
|
Katayama K, Suzuki K, Suno R, Kise R, Tsujimoto H, Iwata S, Inoue A, Kobayashi T, Kandori H. Vibrational spectroscopy analysis of ligand efficacy in human M 2 muscarinic acetylcholine receptor (M 2R). Commun Biol 2021; 4:1321. [PMID: 34815515 PMCID: PMC8635417 DOI: 10.1038/s42003-021-02836-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
The intrinsic efficacy of ligand binding to G protein-coupled receptors (GPCRs) reflects the ability of the ligand to differentially activate its receptor to cause a physiological effect. Here we use attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to examine the ligand-dependent conformational changes in the human M2 muscarinic acetylcholine receptor (M2R). We show that different ligands affect conformational alteration appearing at the C=O stretch of amide-I band in M2R. Notably, ATR-FTIR signals strongly correlated with G-protein activation levels in cells. Together, we propose that amide-I band serves as an infrared probe to distinguish the ligand efficacy in M2R and paves the path to rationally design ligands with varied efficacy towards the target GPCR.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Kohei Suzuki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Hirokazu Tsujimoto
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - So Iwata
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| |
Collapse
|
7
|
Toward a Better Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. PLANTS 2021; 10:plants10050929. [PMID: 34066925 PMCID: PMC8148548 DOI: 10.3390/plants10050929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Nanotechnology is a promising tool that has opened the doors of improvement to the quality of human's lives through its potential in numerous technological aspects. Green chemistry of nanoscale materials (1-100 nm) is as an effective and sustainable strategy to manufacture homogeneous nanoparticles (NPs) with unique properties, thus making the synthesis of green NPs, especially metal nanoparticles (MNPs), the scientist's core theme. Researchers have tested different organisms to manufacture MNPs and the results of experiments confirmed that plants tend to be the ideal candidate amongst all entities and are suitable to synthesize a wide variety of MNPs. Natural and cultivated Eucalyptus forests are among woody plants used for landscape beautification and as forest products. The present review has been written to reflect the efficacious role of Eucalyptus in the synthesis of MNPs. To better understand this, the route of extracting MNPs from plants, in general, and Eucalyptus, in particular, are discussed. Furthermore, the crucial factors influencing the process of MNP synthesis from Eucalyptus as well as their characterization and recent applications are highlighted. Information gathered in this review is useful to build a basis for new prospective research ideas on how to exploit this woody species in the production of MNPs. Nevertheless, there is a necessity to feed the scientific field with further investigations on wider applications of Eucalyptus-derived MNPs.
Collapse
|
8
|
Development of NIR-HSI and chemometrics process analytical technology for drying of beef jerky. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031120] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanomaterials represent a promising novel class of materials to be used as antibacterial solutions. Inhomogeneity of synthesis and characterization methods, as well as resulting variate physical and chemical properties make selection of proper nanostructure difficult when designing antimicrobial experiments. Present study focuses on the already existing evidence regarding silver nanoparticles and their antibacterial applications, with focus on various modulatory factors of reported antimicrobial efficiency. Present paper focuses on synthesis and characterization methods, factors modulating antibacterial efficiency, laboratory quantification procedures, as well as up–to-date knowledge on mechanisms of antibacterial action for silver nanoparticles. Moreover, challenges and future prospects for antimicrobial applications of silver nanoparticles are reviewed and discussed.
Collapse
|
10
|
Fu X, Li J, Zhang G, Zhang C, Fan X. Design of a test bench for gas leaks using CFD simulation and IR-thermography detection. ENVIRONMENTAL TECHNOLOGY 2021; 42:531-544. [PMID: 31232646 DOI: 10.1080/09593330.2019.1636144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
A test bench was constructed to enable the study of the influence of different parameters for gas leaks using computational fluid dynamics (CFD) simulation and IR-thermography detection. The results show that the gas chamber should be larger than 300×300×300 mm3. The diameter of fan-sizing should be 100 mm2. However, the influence is not obvious when the temperature changes. Meanwhile, the influence of the geometry of flow disturbance objects is shown by a sphere and cubic type to be obvious. Based on the results of simulation and detection, a schematic diagram for gas leaks is designed. The parameters of the test bench are also confirmed. The simulated and designed test bench can be used to test gas leaks by IR-thermography in future research.
Collapse
Affiliation(s)
- Xiaolong Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE/School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
- Xi'an Modern Chemistry Research Institute, Xi'an, People's Republic of China
| | - Jizhen Li
- Xi'an Modern Chemistry Research Institute, Xi'an, People's Republic of China
| | - Guofang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE/School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Chongmin Zhang
- Xi'an Modern Chemistry Research Institute, Xi'an, People's Republic of China
| | - Xuezhong Fan
- Xi'an Modern Chemistry Research Institute, Xi'an, People's Republic of China
| |
Collapse
|
11
|
Salvo-Comino C, González-Gil A, Rodriguez-Valentin J, Garcia-Hernandez C, Martin-Pedrosa F, Garcia-Cabezon C, Rodriguez-Mendez ML. Biosensors Platform Based on Chitosan/AuNPs/Phthalocyanine Composite Films for the Electrochemical Detection of Catechol. The Role of the Surface Structure. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2152. [PMID: 32290315 PMCID: PMC7181025 DOI: 10.3390/s20072152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023]
Abstract
Biosensor platforms consisting of layer by layer films combining materials with different functionalities have been developed and used to obtain improved catechol biosensors. Tyrosinase (Tyr) or laccase (Lac) were deposited onto LbL films formed by layers of a cationic linker (chitosan, CHI) alternating with layers of anionic electrocatalytic materials (sulfonated copper phthalocyanine, CuPcS or gold nanoparticles, AuNP). Films with different layer structures were successfully formed. Characterization of surface roughness and porosity was carried out using AFM. Electrochemical responses towards catechol showed that the LbL composites efficiently improved the electron transfer path between Tyr or Lac and the electrode surface, producing an increase in the intensity over the response in the absence of the LbL platform. LbL structures with higher roughness and pore size facilitated the diffusion of catechol, resulting in lower LODs. The [(CHI)-(AuNP)-(CHI)-(CuPcS)]2-Tyr showed an LOD of 8.55∙10-4 μM, which was one order of magnitude lower than the 9.55·10-3 µM obtained with [(CHI)-(CuPcS)-(CHI)-(AuNP)]2-Tyr, and two orders of magnitude lower than the obtained with other nanostructured platforms. It can be concluded that the combination of adequate materials with complementary activity and the control of the structure of the platform is an excellent strategy to obtain biosensors with improved performances.
Collapse
Affiliation(s)
- Coral Salvo-Comino
- Group UVASENS, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain; (C.S.-C.); (A.G.-G.); (J.R.-V.); (C.G.-H.)
- Bioeco UVA Research Institute, Universidad de Valladolid, 47011 Valladolid, Spain (C.G.-C.)
| | - Alfonso González-Gil
- Group UVASENS, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain; (C.S.-C.); (A.G.-G.); (J.R.-V.); (C.G.-H.)
| | - Javier Rodriguez-Valentin
- Group UVASENS, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain; (C.S.-C.); (A.G.-G.); (J.R.-V.); (C.G.-H.)
- Dpt. of Materials Science, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
| | - Celia Garcia-Hernandez
- Group UVASENS, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain; (C.S.-C.); (A.G.-G.); (J.R.-V.); (C.G.-H.)
- Bioeco UVA Research Institute, Universidad de Valladolid, 47011 Valladolid, Spain (C.G.-C.)
| | - Fernando Martin-Pedrosa
- Bioeco UVA Research Institute, Universidad de Valladolid, 47011 Valladolid, Spain (C.G.-C.)
- Dpt. of Materials Science, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
| | - Cristina Garcia-Cabezon
- Bioeco UVA Research Institute, Universidad de Valladolid, 47011 Valladolid, Spain (C.G.-C.)
- Dpt. of Materials Science, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
| | - Maria Luz Rodriguez-Mendez
- Group UVASENS, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain; (C.S.-C.); (A.G.-G.); (J.R.-V.); (C.G.-H.)
- Bioeco UVA Research Institute, Universidad de Valladolid, 47011 Valladolid, Spain (C.G.-C.)
| |
Collapse
|
12
|
Cadet XF, Lo-Thong O, Bureau S, Dehak R, Bessafi M. Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot. Sci Rep 2019; 9:19197. [PMID: 31844151 PMCID: PMC6915699 DOI: 10.1038/s41598-019-55543-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/29/2019] [Indexed: 12/04/2022] Open
Abstract
Fast advancement of machine learning methods and constant growth of the areas of application open up new horizons for large data management and processing. Among the various types of data available for analysis, the Fourier Transform InfraRed (FTIR) spectroscopy spectra are very challenging datasets to consider. In this study, machine learning is used to analyze and predict a rheological parameter: firmness. Various statistics have been gathered including both chemistry (such as ethylene, titrable acidity or sugars) and spectra values to visualize and analyze a dataset of 731 biological samples. Two-dimensional (2D) and three-dimensional (3D) principal component analyses (PCA) are used to evaluate their ability to discriminate for one parameter: firmness. Partial least squared regression (PLSR) modeling has been carried out to predict the rheological parameter using either sixteen physicochemical parameters or only the infrared spectra. We show that (i) the spectra alone allows good discrimination of the samples based on rheology, (ii) 3D-PCA allows comprehensive and informative visualization of the data, and (iii) that the rheological parameters are predicted accurately using a regression method such as PLSR; instead of using chemical parameters which are laborious to obtain, Mid-FTIR spectra gathering all physicochemical information could be used for efficient prediction of firmness. As a conclusion, rheological and chemical parameters allow good discrimination of the samples according to their firmness. However, using only the IR spectra leads to better results. A good predictive model was built for the prediction of the firmness of the fruit, and we reached a coefficient of determination R2 value of 0.90. This method outperforms a model based on physicochemical descriptors only. Such an approach could be very helpful to technologists and farmers.
Collapse
Affiliation(s)
- Xavier F Cadet
- PEACCEL, Protein Engineering Accelerator, 6 square Albin Cachot, box 42, 75013, Paris, France. .,LSE laboratory, EPITA, Paris, 94276, France.
| | - Ophélie Lo-Thong
- University of Paris, UMR_S1134, BIGR, Inserm, F-75015, Paris, France.,DSIMB, UMR_S1134, BIGR, Inserm, Laboratory of Excellence GR-Ex, Faculty of Sciences and Technology, University of La Reunion, F-97715, Saint-Denis, France
| | - Sylvie Bureau
- UMR408 SQPOV, Sécurité et Qualité des Produits d'Origine Végétale, INRA, Avignon University, F-84000, Avignon, France
| | - Reda Dehak
- LSE laboratory, EPITA, Paris, 94276, France
| | - Miloud Bessafi
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, 97444, St Denis Cedex, France
| |
Collapse
|
13
|
Attenuated Total Reflectance Fourier Transformation Infrared spectroscopy fingerprinted online monitoring of the kinetics of circulating Butyrylcholinesterase enzyme during metabolism of bambuterol. Anal Chim Acta 2018; 1005:70-80. [DOI: 10.1016/j.aca.2017.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/19/2017] [Accepted: 12/10/2017] [Indexed: 12/18/2022]
|
14
|
Rajeshkumar S, Bharath L. Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact 2017. [DOI: 10.1016/j.cbi.2017.06.019] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Böcker U, Wubshet SG, Lindberg D, Afseth NK. Fourier-transform infrared spectroscopy for characterization of protein chain reductions in enzymatic reactions. Analyst 2017; 142:2812-2818. [DOI: 10.1039/c7an00488e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential of dry-film Fourier-transform infrared (FTIR) measurements as a monitoring tool for enzymatic hydrolysis of protein-based substrates is explored in this study.
Collapse
Affiliation(s)
- Ulrike Böcker
- Nofima AS – Norwegian Institute of Food
- Fisheries and Aquaculture Research
- NO-1431 Ås
- Norway
| | | | - Diana Lindberg
- Nofima AS – Norwegian Institute of Food
- Fisheries and Aquaculture Research
- NO-1431 Ås
- Norway
| | - Nils Kristian Afseth
- Nofima AS – Norwegian Institute of Food
- Fisheries and Aquaculture Research
- NO-1431 Ås
- Norway
| |
Collapse
|
16
|
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci 2016; 17:E1534. [PMID: 27649147 PMCID: PMC5037809 DOI: 10.3390/ijms17091534] [Citation(s) in RCA: 1218] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.
Collapse
Affiliation(s)
- Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhi-Guo Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
17
|
Mackie DM, Jahnke JP, Benyamin MS, Sumner JJ. Simple, fast, and accurate methodology for quantitative analysis using Fourier transform infrared spectroscopy, with bio-hybrid fuel cell examples. MethodsX 2016; 3:128-38. [PMID: 26977411 PMCID: PMC4781924 DOI: 10.1016/j.mex.2016.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/12/2016] [Indexed: 11/17/2022] Open
Abstract
The standard methodologies for quantitative analysis (QA) of mixtures using Fourier transform infrared (FTIR) instruments have evolved until they are now more complicated than necessary for many users’ purposes. We present a simpler methodology, suitable for widespread adoption of FTIR QA as a standard laboratory technique across disciplines by occasional users.Algorithm is straightforward and intuitive, yet it is also fast, accurate, and robust. Relies on component spectra, minimization of errors, and local adaptive mesh refinement. Tested successfully on real mixtures of up to nine components.
We show that our methodology is robust to challenging experimental conditions such as similar substances, component percentages differing by three orders of magnitude, and imperfect (noisy) spectra. As examples, we analyze biological, chemical, and physical aspects of bio-hybrid fuel cells.
Collapse
Affiliation(s)
- David M Mackie
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, USA
| | - Justin P Jahnke
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, USA
| | - Marcus S Benyamin
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, USA
| | - James J Sumner
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, USA
| |
Collapse
|
18
|
Bolivar JM, Eisl I, Nidetzky B. Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Sudhakara S, Chadha A. A fourier transform infrared spectroscopy (FTIR) based assay for Candida parapsilosis ATCC 7330 mediated oxidation of aryl alcohols. J Biotechnol 2015; 209:102-7. [PMID: 26100234 DOI: 10.1016/j.jbiotec.2015.06.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 11/28/2022]
Abstract
We present an FTIR based assay to monitor the whole cell mediated oxidation of aryl alcohols by measuring the characteristic IR absorption of the hydroxyl group [OH] of the substrate and the carbonyl group [CO] of the corresponding oxidized product. This method expedites the analysis of whole cell mediated catalysis which is usually done by GC and/or HPLC. The FTIR assay had linearity with R(2)≥0.980 and sensitivity up to 10μM. The accuracy and precision of FTIR assay was found ≥81% and ≥94%, respectively. This assay was validated by GC which exhibited ≥82% accuracy and ≥79% precision. The time of analysis taken by this assay was 2-3min per sample in comparison with 20-40min by GC.
Collapse
Affiliation(s)
- Sneha Sudhakara
- Laboratory of Bioorganic Chemistry, Department of Biotechnology
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry, Department of Biotechnology; National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
20
|
Baldassarre M, Barth A. Pushing the detection limit of infrared spectroscopy for structural analysis of dilute protein samples. Analyst 2015; 139:5393-9. [PMID: 25163493 DOI: 10.1039/c4an00918e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fourier-transform infrared spectroscopy is a powerful and versatile tool to investigate the structure and dynamics of proteins in solution. The intrinsically low extinction coefficient of the amide I mode, the main structure-related oscillator, together with the high infrared absorptivity of aqueous media, requires that proteins are studied at high concentrations (>10 mg L(-1)). This may represent a challenge in the study of aggregation-prone proteins and peptides, and questions the significance of structural data obtained for proteins physiologically existing at much lower concentrations. Here we describe the development of a simple experimental approach that increases the detection limit of protein structure analysis by infrared spectroscopy. Our approach relies on custom-made filters to isolate the amide I region (1700-1600 cm(-1)) from irrelevant spectral regions. The sensitivity of the instrument is then increased by background attenuation, an approach consisting in the use of a neutral density filter, such as a non-scattering metal grid, to attentuate the intensity of the background spectrum. When the filters and grid are combined, a 2.4-fold improvement in the noise level can be obtained. We have successfully tested this approach using a highly diluted solution of pyruvate kinase in deuterated medium (0.2% w/v), and found that it provides spectra of a quality comparable to those recorded with a 10-fold higher protein concentration.
Collapse
Affiliation(s)
- Maurizio Baldassarre
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
21
|
Fears KP, Gonzalez-Begne M, Love CT, Day DE, Koo H. Surface-induced changes in the conformation and glucan production of glucosyltransferase adsorbed on saliva-coated hydroxyapatite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4654-4662. [PMID: 25867796 DOI: 10.1021/la504461h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Glucosyltransferases (Gtfs) from S. mutans play critical roles in the development of virulent oral biofilms associated with dental caries disease. Gtfs adsorbed to the tooth surface produce glucans that promote local microbial colonization and provide an insoluble exopolysaccharides (EPS) matrix that facilitates biofilm initiation. Moreover, agents that inhibit the enzymatic activity of Gtfs in solution often have reduced or no effects on surface-adsorbed Gtfs. This study elucidated the mechanisms responsible for the differences in functionality that GtfB exhibits in solution vs surface-adsorbed. Upon adsorption to planar fused-quartz substrates, GtfB displayed a 37% loss of helices and 36% increase of β-sheets, as determined by circular dichroism (CD) spectroscopy, and surface-induced conformational changes were more severe on substrates modified with CH3- and NH2-terminated self-assembled monolayers. GtfB also underwent substantial conformation changes when adsorbing to hydroxyapatite (HA) microspheres, likely due to electrostatic interactions between negatively charged GtfB and positively charged HA crystal faces. Conformational changes were lessened when HA surfaces were coated with saliva (sHA) prior to GtfB adsorption. Furthermore, GtfB remained highly active on sHA, as determined by in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, producing glucans that were structurally different than GtfB in solution and known to increase the accumulation and virulence of biofilms. Our data provide the first insight into the structural underpinnings governing Gtf conformation and enzymatic function that occur on tooth surfaces in vivo, which may lead to designing potent new inhibitors and improved strategies to combat the formation of pathogenic oral biofilms.
Collapse
Affiliation(s)
- Kenan P Fears
- †Chemistry Division, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Mireya Gonzalez-Begne
- ‡Department of Dentistry and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Corey T Love
- †Chemistry Division, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Delbert E Day
- §Department of Materials Science and Engineering and Center for Bone and Tissue Repair and Regeneration, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hyun Koo
- ∥Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Division of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Torres S, Mella H, Reyes C, Meza P, Gallardo MJ, Staforelli JP. Features for instantaneous emissions of low-level infrared signals of glucokinase enzyme from Pyrococcus furiosus. APPLIED OPTICS 2015; 54:2057-2065. [PMID: 25968383 DOI: 10.1364/ao.54.002057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
A noncontact infrared (IR) imaging-based methodology and signal recovery tools are applied on an enzyme reaction as a test target. The method is implemented by a long-wave (8-12 μm) IR microbolometer imaging array and a germanium-based IR optical vision. The reaction is carried out by the glucokinase, which produces a rapid exothermal release of energy that is weak, and, even worse, the IR video captured by the uncooled microbolometer detector is affected by spatial and temporal noise with specific complexities. Hitherto, IR-based signal recovery tools have worked with a standard acquisition frequency, which is clearly beyond the time scale of a real scenario. The implications of this (and similar) rapid reactions motivate the designs of a signal recovery method using prior information of the processes to extract and quantify the spontaneity of the enzymatic reaction in a three-dimensional (space and time) single and noncontact online measurement.
Collapse
|
23
|
Khaskheli AA, Talpur FN, Ashraf MA, Cebeci A, Jawaid S, Afridi HI. Monitoring the Rhizopus oryzae lipase catalyzed hydrolysis of castor oil by ATR-FTIR spectroscopy. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Kaufhold D, Fagaschewski J, Sellin D, Strompen S, Liese A, Hilterhaus L. Novel μ-membrane module for online determination of the free fatty acid content in the dispersed phase of oil-in-water emulsions. Anal Bioanal Chem 2014; 406:3157-66. [DOI: 10.1007/s00216-014-7740-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/18/2014] [Accepted: 03/03/2014] [Indexed: 11/30/2022]
|
25
|
Anderson BA, Literati A, Ball B, Kubelka J. Temperature dependence of amino acid side chain IR absorptions in the amide I' region. Biopolymers 2014; 101:536-48. [DOI: 10.1002/bip.22416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/05/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Benjamin A. Anderson
- Department of Chemistry, University of Wyoming, 1000 E University Ave; Laramie WY 82071
| | - Alex Literati
- Department of Chemistry, University of Wyoming, 1000 E University Ave; Laramie WY 82071
| | - Borden Ball
- Department of Chemistry, University of Wyoming, 1000 E University Ave; Laramie WY 82071
| | - Jan Kubelka
- Department of Chemistry, University of Wyoming, 1000 E University Ave; Laramie WY 82071
| |
Collapse
|
26
|
Eremina N, Barth A. Use of Creatine Kinase To Induce Multistep Reactions in Infrared Spectroscopic Experiments. J Phys Chem B 2013; 117:14967-72. [DOI: 10.1021/jp409599p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nadejda Eremina
- Department
of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural
Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andreas Barth
- Department
of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural
Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
27
|
Konieczna I, Zarnowiec P, Kwinkowski M, Kolesinska B, Fraczyk J, Kaminski Z, Kaca W. Bacterial urease and its role in long-lasting human diseases. Curr Protein Pept Sci 2013; 13:789-806. [PMID: 23305365 PMCID: PMC3816311 DOI: 10.2174/138920312804871094] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/15/2012] [Accepted: 09/03/2012] [Indexed: 02/07/2023]
Abstract
Urease is a virulence factor found in various pathogenic bacteria. It is essential in colonization of a host organism and in maintenance of bacterial cells in tissues. Due to its enzymatic activity, urease has a toxic effect on human cells. The presence of ureolytic activity is an important marker of a number of bacterial infections. Urease is also an immunogenic protein and is recognized by antibodies present in human sera. The presence of such antibodies is connected with progress of several long-lasting diseases, like rheumatoid arthritis, atherosclerosis or urinary tract infections. In bacterial ureases, motives with a sequence and/or structure similar to human proteins may occur. This phenomenon, known as molecular mimicry, leads to the appearance of autoantibodies, which take part in host molecules destruction. Detection of antibodies-binding motives (epitopes) in bacterial proteins is a complex process. However, organic chemistry tools, such as synthetic peptide libraries, are helpful in both, epitope mapping as well as in serologic investigations. In this review, we present a synthetic report on a molecular organization of bacterial ureases - genetic as well as structural. We characterize methods used in detecting urease and ureolytic activity, including techniques applied in disease diagnostic processes and in chemical synthesis of urease epitopes. The review also provides a summary of knowledge about a toxic effect of bacterial ureases on human body and about occurrence of anti-urease antibodies in long-lasting diseases.
Collapse
Affiliation(s)
- Iwona Konieczna
- Department of Microbiology, Institute of Biology, The Jan Kochanowski University, ul. Swietokrzyska 15, 25-406 Kielce, Poland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tan Q, Pei X, Zhu S, Sun D, Liu J, Xue C, Liang T, Zhang W, Xiong J. Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane. SENSORS 2013; 13:4157-69. [PMID: 23539025 PMCID: PMC3673077 DOI: 10.3390/s130404157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 11/16/2022]
Abstract
In this paper, we present an approach to develop an optical gas leak sensor that can be used to measure ethylene, dimethyl ether, and methane. The sensor is designed based on the principles of IR absorption spectrum detection, and comprises two crossed elliptical surfaces with a folded reflection-type optical path. We first analyze the optical path and the use of this structure to design a miniature gas sensor. The proposed sensor includes two detectors (one to acquire the reference signal and the other for the response signal), the light source, and the filter, all of which are integrated in a miniature gold-plated chamber. We also designed a signal detection device to extract the sensor signal and a microprocessor to calculate and control the entire process. The produced sensor prototype had an accuracy of ±0.05%. Experiments which simulate the transportation of hazardous chemicals demonstrated that the developed sensor exhibited a good dynamic response and adequately met technical requirements.
Collapse
Affiliation(s)
- Qiulin Tan
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan 030051, Shanxi, China; E-Mails: (Q.T.); (X.P.); (D.S.); (J.L.); (C.X.); (W.Z.)
| | - Xiangdong Pei
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan 030051, Shanxi, China; E-Mails: (Q.T.); (X.P.); (D.S.); (J.L.); (C.X.); (W.Z.)
| | - Simin Zhu
- National Key Laboratory for Electronic Measurement Technology, Taiyuan 030051, Shanxi, China; E-Mails: (S.Z.); (T.L.)
| | - Dong Sun
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan 030051, Shanxi, China; E-Mails: (Q.T.); (X.P.); (D.S.); (J.L.); (C.X.); (W.Z.)
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Jun Liu
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan 030051, Shanxi, China; E-Mails: (Q.T.); (X.P.); (D.S.); (J.L.); (C.X.); (W.Z.)
- National Key Laboratory for Electronic Measurement Technology, Taiyuan 030051, Shanxi, China; E-Mails: (S.Z.); (T.L.)
| | - Chenyang Xue
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan 030051, Shanxi, China; E-Mails: (Q.T.); (X.P.); (D.S.); (J.L.); (C.X.); (W.Z.)
| | - Ting Liang
- National Key Laboratory for Electronic Measurement Technology, Taiyuan 030051, Shanxi, China; E-Mails: (S.Z.); (T.L.)
| | - Wendong Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan 030051, Shanxi, China; E-Mails: (Q.T.); (X.P.); (D.S.); (J.L.); (C.X.); (W.Z.)
- National Key Laboratory for Electronic Measurement Technology, Taiyuan 030051, Shanxi, China; E-Mails: (S.Z.); (T.L.)
| | - Jijun Xiong
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan 030051, Shanxi, China; E-Mails: (Q.T.); (X.P.); (D.S.); (J.L.); (C.X.); (W.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-187-3485-6312; Fax: +86-351-355-8768
| |
Collapse
|
29
|
Do LD, Buchet R, Pikula S, Abousalham A, Mebarek S. Direct determination of phospholipase D activity by infrared spectroscopy. Anal Biochem 2012; 430:32-8. [PMID: 22842398 DOI: 10.1016/j.ab.2012.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022]
Abstract
To determine phospholipase D (PLD) activity, an infrared spectroscopy assay was developed, based on the phosphate vibrational mode of phospholipids such as dimyristoylphophatidylcholine (DMPC), lysophosphatidylglycerol (lysoPG), dipalmitoylphosphatidylethanolamine (DPPE), and lysophosphatidylserine (lysoPS). The phosphate bands served to monitor the hydrolysis rates of phospholipids with PLD. The measurements could be performed within less than 20min with 10μl of buffer containing 2 to 40mM DMPC and 10 to 200ng of Streptomyces chromofuscus PLD (corresponding to 350-7000pmol of DMPC hydrolyzed per minute). The limit of sensitivity was approximately 10ng of PLD at 100mM Tris-HCl (pH 8.0) with 10mM Ca(2+) and 2.5mgml(-1) Triton X-100. Reproducible specific activity of PLD (35±5nmol of hydrolyzed DMPCmin(-1)μg(-1) PLD) measured by the infrared assay remained stable over 50 to 200ng of PLD and over 5 to 40mM DMPC. The feasibility of this assay to determine the hydrolysis rate of other phospholipids such as lysoPG, DPPE, and lysoPS was confirmed. The IC(50) of cobalt (800±200μM), a known S. chromofuscus PLD inhibitor, was measured by means of the infrared assay, demonstrating that this assay can be used to screen PLD activity and/or the specificity of its inhibitors.
Collapse
|
30
|
Quaroni L, Zlateva T. Infrared spectromicroscopy of biochemistry in functional single cells. Analyst 2011; 136:3219-32. [DOI: 10.1039/c1an15060j] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|