1
|
He S, Xu R, Yi H, Chen Z, Chen C, Li Q, Han Q, Xia X, Song Y, Xu J, Zhang J. Development of alkaline phosphatase-scFv and its use for one-step enzyme-linked immunosorbent assay for His-tagged protein detection. Open Life Sci 2022; 17:1505-1514. [DOI: 10.1515/biol-2022-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
A histidine (His)-tag is composed of six His residues and typically exerts little influence on the structure and solubility of expressed recombinant fusion proteins. Purification methods for recombinant proteins containing His-tags are relatively well-established, thus His-tags are widely used in protein recombination technology. We established a one-step enzyme-linked immunosorbent assay (ELISA) for His-tagged recombinant proteins. We analyzed variable heavy and light chains of the anti-His-tag monoclonal antibody 4C9 and used BLAST analyses to determine variable zones in light (VL) and heavy chains (VH). VH, VL, and alkaline phosphatase (ALP) regions were connected via a linker sequence and ligated into the pGEX-4T-1 expression vector. Different recombinant proteins with His tags were used to evaluate and detect ALP-scFv activity. Antigen and anti-His-scFv-ALP concentrations for direct ELISA were optimized using the checkerboard method. ZIKV-NS1, CHIKV-E2, SCRV-N, and other His-tag fusion proteins demonstrated specific reactions with anti-His-scFv-ALP, which were accurate and reproducible when the antigen concentration was 50 µg mL−1 and the antibody concentration was 6.25 µg mL−1. For competitive ELISA, we observed a good linear relationship when coating concentrations of recombinant human anti-Müllerian hormone (hAMH) were between 0.78 and 12.5 µg mL−1. Our direct ELISA method is simple, rapid, and accurate. The scFv antibody can be purified using a prokaryotic expression system, which provides uniform product quality and reduces variations between batches.
Collapse
Affiliation(s)
- Shuzhen He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Ruixian Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Huashan Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang , Chongqing 402460 , China
| | - Zhixin Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Congjie Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Qiang Li
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Xueshan Xia
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Junwei Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| |
Collapse
|
2
|
Gwiazda M, Bhardwaj SK, Kijeńska-Gawrońska E, Swieszkowski W, Sivasankaran U, Kaushik A. Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System. BIOSENSORS-BASEL 2021; 11:bios11070227. [PMID: 34356698 PMCID: PMC8301786 DOI: 10.3390/bios11070227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
This research presents an electrochemical immunosensor for collagen I detection using a self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) and covalently immobilized half-reduced monoclonal antibody as a receptor; this allowed for the validation of the collagen I concentration through two different independent methods: electrochemically by Electrochemical Impedance Spectroscopy (EIS), and optically by Surface Plasmon Resonance (SPR). The high unique advantage of the proposed sensor is based on the performance of the stable covalent immobilization of the AuNPs and enzymatically reduced half-IgG collagen I antibodies, which ensured their appropriate orientation onto the sensor's surface, good stability, and sensitivity properties. The detection of collagen type I was performed in a concentration range from 1 to 5 pg/mL. Moreover, SPR was utilized to confirm the immobilization of the monoclonal half-antibodies and sensing of collagen I versus time. Furthermore, EIS experiments revealed a limit of detection (LOD) of 0.38 pg/mL. The selectivity of the performed immunosensor was confirmed by negligible responses for BSA. The performed approach of the immunosensor is a novel, innovative attempt that enables the detection of collagen I with very high sensitivity in the range of pg/mL, which is significantly lower than the commonly used enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Marcin Gwiazda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Sheetal K. Bhardwaj
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
- Correspondence: or (S.K.B.); or (A.K.)
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
| | - Unni Sivasankaran
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805, USA
- Correspondence: or (S.K.B.); or (A.K.)
| |
Collapse
|
3
|
Mikuła E, Silva CE, Kopera E, Zdanowski K, Radecki J, Radecka H. Highly sensitive electrochemical biosensor based on redox - active monolayer for detection of anti-hemagglutinin antibodies against swine-origin influenza virus H1N1 in sera of vaccinated mice. BMC Vet Res 2018; 14:328. [PMID: 30400888 PMCID: PMC6218974 DOI: 10.1186/s12917-018-1668-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
Background In this work, we report an electrochemical biosensor for the detection of anti-hemagglutinin antibodies against the swine virus H1N1 present in mice sera immunized with mixture of His6-H1 HA in monomeric and oligomeric form. The oriented immobilization of the recombinant His-tagged hemagglutinin (His6-H1 HA) consists of: (i) formation of a mixed layer of 4-mercaptobutanol (MBT) and the thiol derivative of dipyrromethene (DPM); (ii) complexation of Cu (II) by DPM; (iii) immobilization of His6-H1 HA via coordination bonds between Cu (II) sites from DPM–Cu (II) complex and imidazole nitrogen atoms of a histidine tag; (iv) filling free spaces with bovine serum albumin. The interactions between recombinant His6- H1 HA covalently attached to the electrode surface and the anti-hemagglutinin H1 antibodies present in mice sera were explored with Osteryoung square-wave voltammetry. Results This analytical device was able to detect the antibodies present in vaccinated mice sera diluted from 1 × 109 to 1 × 108 fold. Conclusions The unprecedented sensitivity of described biosensor is much better than widely use ELISA test and other analytical methods for determination of antibodies against the influenza A viruses. It has been proved that redox active DPM-Cu (II) monolayer is a universal platform suitable for stable and oriented immobilization of any His-tagged sensing elements. Thus, this universal layer could be a base of numerous analytical devices suitable for detection of antibodies against different viruses.
Collapse
Affiliation(s)
- Edyta Mikuła
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Cristiane Erdmann Silva
- Universidade Estadual de Ponta Grossa - UEPG, Setor de Ciências Exatas e da Terra, Departamento de Química, Av. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa/ PR, Brazil
| | - Edyta Kopera
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Research and Development Center, Olimp Laboratories, Pustynia, Dębica, Poland
| | - Konrad Zdanowski
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Institute of Chemistry, University of Natural Sciences and Humanities, 3 Maja 54, 08-110, Siedlce, Poland
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
4
|
Fathi F, Jalili R, Amjadi M, Rashidi MR. SPR signals enhancement by gold nanorods for cell surface marker detection. ACTA ACUST UNITED AC 2018; 9:71-78. [PMID: 31334038 PMCID: PMC6637213 DOI: 10.15171/bi.2019.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/06/2018] [Accepted: 10/07/2018] [Indexed: 12/26/2022]
Abstract
![]()
Introduction:
The detection of micrometer-sized particles like cells is limited by surface plasmon resonance (SPR) biosensors because of having a depth of evanescent wave <500 nm. In this study, for the first time, we exhibited the use of streptavidin-functionalized gold nanorods (GNRs) as intensification labels for detection of cell surface markers in SPR-based biosensors.
Methods: The GNRs (ʎ max: 735 nm) were modified with streptavidin using EDC/NHS coupling method and human umbilical vein endothelial cells (HUVECs) were selected as the cell model for detecting VE-cadherin on cell surface using real-time SPR device in the 785 nm wavelength of the laser source.
Results: The investigations revealed that the plasmonic field extension produced from the gold layer and GNRs resulted in multiple enhancement of SPR signals when the wavelength of laser source in SPR instrument was matched with the wavelength of maximum absorbance in GNRs. Moreover, the results showed that the growth of ∆RU value in specific and non-specific bindings for various cell number injections were produced with increasing the cell number.
Conclusion: The results displayed that cell detection can be performed in real- time form without any need to a time-consuming process used in conventional methods like immunocytochemistry, flow cytometry, and western blotting.
Collapse
Affiliation(s)
- Farzaneh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Jalili
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Pali M, Suni II. Impedance Detection of 3‐Phenoxybenzoic Acid Comparing Wholes Antibodies and Antibody Fragments for Biomolecular Recognition. ELECTROANAL 2018. [DOI: 10.1002/elan.201800495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Madhavi Pali
- Department of Chemistry & BiochemistryMaterials Technology CenterSouthern Illinois University Carbondale, IL 62901 USA
| | - Ian I. Suni
- Department of Chemistry & BiochemistryMaterials Technology CenterSouthern Illinois University Carbondale, IL 62901 USA
- Department of Mechanical Engineering & Energy ProcessesSouthern Illinois University Carbondale, IL 62901 USA
| |
Collapse
|
6
|
Islam K, Damiati S, Sethi J, Suhail A, Pan G. Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer's Biomarker. SENSORS (BASEL, SWITZERLAND) 2018; 18:E308. [PMID: 29361679 PMCID: PMC5795331 DOI: 10.3390/s18010308] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/01/2023]
Abstract
Clusterin (CLU) has been associated with the clinical progression of Alzheimer's disease (AD) and described as a potential AD biomarker in blood plasma. Due to the enormous attention given to cerebrospinal fluid (CSF) biomarkers for the past couple of decades, recently found blood-based AD biomarkers like CLU have not yet been reported for biosensors. Herein, we report the electrochemical detection of CLU for the first time using a screen-printed carbon electrode (SPCE) modified with 1-pyrenebutyric acid N-hydroxysuccinimide ester (Pyr-NHS) and decorated with specific anti-CLU antibody fragments. This bifunctional linker molecule contains succinylimide ester to bind protein at one end while its pyrene moiety attaches to the carbon surface by means of π-π stacking. Cyclic voltammetric and square wave voltammetric studies showed the limit of detection down to 1 pg/mL and a linear concentration range of 1-100 pg/mL with good sensitivity. Detection of CLU in spiked human plasma was demonstrated with satisfactory recovery percentages to that of the calibration data. The proposed method facilitates the cost-effective and viable production of label-free point-of-care devices for the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Kamrul Islam
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Jagriti Sethi
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Ahmed Suhail
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Genhua Pan
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
7
|
Localized surface plasmon resonance of gold nanorods and assemblies in the view of biomedical analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Mauriz E, García-Fernández M, Lechuga L. Towards the design of universal immunosurfaces for SPR-based assays: A review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Paul DM, Beuron F, Sessions RB, Brancaccio A, Bigotti MG. Internal (His)₆-tagging delivers a fully functional hetero-oligomeric class II chaperonin in high yield. Sci Rep 2016; 6:20696. [PMID: 26856373 PMCID: PMC4746591 DOI: 10.1038/srep20696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 11/09/2022] Open
Abstract
Group II chaperonins are ATP-ases indispensable for the folding of many proteins that play a crucial role in Archaea and Eukarya. They display a conserved two-ringed assembly enclosing an internal chamber where newly translated or misfolded polypeptides can fold to their native structure. They are mainly hexadecamers, with each eight-membered ring composed of one or two (in Archaea) or eight (in Eukarya) different subunits. A major recurring problem within group II chaperonin research, especially with the hetero-oligomeric forms, is to establish an efficient recombinant system for the expression of large amounts of wild-type as well as mutated variants. Herein we show how we can produce, in E. coli cells, unprecedented amounts of correctly assembled and active αβ-thermosome, the class II chaperonin from Thermoplasma acidophilum, by introducing a (His)6-tag within a loop in the α subunit of the complex. The specific location was identified via a rational approach and proved not to disturb the structure of the chaperonin, as demonstrated by size-exclusion chromatography, native gel electrophoresis and electron microscopy. Likewise, the tagged protein showed an ATP-ase activity and an ability to refold substrates identical to the wild type. This tagging strategy might be employed for the overexpression of other recombinant chaperonins.
Collapse
Affiliation(s)
- Danielle M. Paul
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Istituto di Chimica del Riconoscimento Molecolare, CNR c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | | |
Collapse
|
10
|
Yeo ELL, Chua AJS, Parthasarathy K, Yeo HY, Ng ML, Kah JCY. Understanding aggregation-based assays: nature of protein corona and number of epitopes on antigen matters. RSC Adv 2015. [DOI: 10.1039/c4ra12089b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
In this study, we systematically examine how the nature of the protein corona on NPs, formed from either antibody or antigen, and how the number of binding sites or epitopes on the antigen affect aggregation.
Collapse
Affiliation(s)
- Eugenia Li Ling Yeo
- Nanomedicine & Nanorobotics Laboratory
- Department of Biomedical Engineering
- National University of Singapore
- Singapore 117575
| | - Anthony Jin Shun Chua
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Krupakar Parthasarathy
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Hui Yu Yeo
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Mah Lee Ng
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - James Chen Yong Kah
- Nanomedicine & Nanorobotics Laboratory
- Department of Biomedical Engineering
- National University of Singapore
- Singapore 117575
| |
Collapse
|
11
|
Choi ES, Lee SG, Lee SJ, Kim E. Rapid detection of 6×-histidine-labeled recombinant proteins by immunochromatography using dye-labeled cellulose nanobeads. Biotechnol Lett 2014; 37:627-32. [PMID: 25388454 DOI: 10.1007/s10529-014-1731-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/05/2014] [Indexed: 02/02/2023]
Abstract
A rapid and easy immunochromatography assay using dye-labeled cellulose nanobeads (CNBs) was developed to detect proteins with hexa-histidine tag (His-tag) to characterize recombinant proteins during purification. Recombinant ATG8 protein was used as a His-tagged protein, and ATG8-conjugated CNBs (A-CNBs) were prepared. The original ATG8 in the sample solution competed with A-CNBs for anti-His-tag antibodies spotted on to the strip resulting in an inverse relationship between ATG8 concentration and the colorimetric signal. The usefulness of this method was shown by adding ATG8 to a 1% Escherichia coli extract. In addition, this assay can be used to detect other His-tagged proteins without protein-specific antibodies. Because the identification of fractions containing His-tagged proteins by western blotting or ELISA is labor-intensive and expensive, our method provides an efficient and cheaper alternative.
Collapse
Affiliation(s)
- Eun-Sook Choi
- Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 711-873, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Jarocka U, Sawicka R, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Radecki J, Radecka H. An immunosensor based on antibody binding fragments attached to gold nanoparticles for the detection of peptides derived from avian influenza hemagglutinin H5. SENSORS (BASEL, SWITZERLAND) 2014; 14:15714-28. [PMID: 25157550 PMCID: PMC4208141 DOI: 10.3390/s140915714] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/10/2014] [Accepted: 08/11/2014] [Indexed: 01/07/2023]
Abstract
This paper concerns the development of an immunosensor for detection of peptides derived from avian influenza hemagglutinin H5. Its preparation consists of successive gold electrode modification steps: (i) modification with 1,6-hexanedithiol and gold colloidal nanoparticles; (ii) immobilization of antibody-binding fragments (Fab') of anti-hemagglutinin H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds; and (iii) covering the remaining free space on the electrode surfaces with bovine serum albumin. The interactions between Fab' fragments and hemagglutinin (HA) variants have been explored with electrochemical impedance spectroscopy (EIS) in the presence of [Fe(CN)6](3-/4-) as an electroactive marker. The immunosensor was able to recognize three different His-tagged variants of recombinant hemagglutinin from H5N1 viruses: H1 subunit (17-340 residues) of A/swan/Poland/305-135V08/2006, the long HA (17-530 residues) A/Bar-headed Goose/Qinghai/12/2005 and H1 subunit (1-345 residues) of A/Vietnam/1194/2004. The strongest response has been observed for the long variant with detection limit of 2.2 pg/mL and dynamic range from 4.0 to 20.0 pg/mL.
Collapse
Affiliation(s)
- Urszula Jarocka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Róża Sawicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Włodzimierz Zagórski-Ostoja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
13
|
His-tag protein monitoring by a fast mix-and-measure immunoassay. Sci Rep 2014; 4:5613. [PMID: 25000910 PMCID: PMC4085604 DOI: 10.1038/srep05613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/18/2014] [Indexed: 11/22/2022] Open
Abstract
Here, we present a fast mix-and-measure immunoassay for the specific semiquantitative detection of His-tagged proteins, for example in E. coli cell lysate. The assay is based on Förster resonance energy transfer (FRET) between a lanthanide dye-labeled low-affinity His-peptide and an acceptor-labeled anti-His-tag antibody. The targeted His-tag protein in the sample displaces the donor-labeled peptide and leads to a concentration-dependent time-resolved fluorescence signal. The assay has a total assay time of less than two minutes including sample preparation. The assay recognizes both, N- and C-terminally tagged proteins. The detection limit is comparable to those obtained in SDS-PAGE or Western Blot, which are used as standard methods for the characterization of His-tag protein expression. Additionally, we demonstrate a full compatibility of the developed assay to cell lysate, and a correlation to detectable bands in a western blot application. In conclusion, this fast, sensitive, specific and affordable mix-and-measure assay provides a timesaving and user-friendly way to quantify recombinant protein expression. It substantially reduces the workload for recombinant protein detection, especially when His-tag-protein-containing fractions in manual chromatographic purifications have to be identified.
Collapse
|
14
|
Jarocka U, Sawicka R, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Radecki J, Radecka H. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum. Biosens Bioelectron 2013; 55:301-6. [PMID: 24412426 DOI: 10.1016/j.bios.2013.12.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/21/2022]
Abstract
This paper describes the development of an immunosensor for detection of anti-hemagglutinin antibodies. Its preparation consists of successive modification steps of glassy carbon electrodes: (i) creation of COOH groups, (ii) covalent immobilization of protein A with EDC/NHS coupling reaction, (iii) covering with anti-His IgG monoclonal antibody, (iv) immobilization of the recombinant His-tagged hemagglutinin (His6-H5 HA), (v) filling free space with BSA. The interactions between two variants of recombinant HA (short and long) from highly pathogenic avian influenza virus H5N1 and the anti-H5 HA monoclonal antibody (Mab 6-9-1) have been explored with electrochemical impedance spectroscopy (EIS). The impedimetric immunosensor displayed a very good detection limit (LOD) of 2.1 pg/mL, the quantification limit (LOQ) of 6.3 pg/mL and a dynamic range from 4 pg/mL to 20 pg/mL. In addition, this analytical device was applied for detection of antibodies against His6-H5 HA in serum of vaccinated hen using serial 10-fold dilutions of serum. The immunosensor proposed was able to detect antibody in hen serum diluted up to 7 × 10(7)-fold. The sensitivity of immunosensor was about four orders of magnitude much better than ELISA.
Collapse
Affiliation(s)
- Urszula Jarocka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Róża Sawicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
15
|
Mielecki M, Wojtasik J, Zborowska M, Kurzątkowska K, Grzelak K, Dehaen W, Radecki J, Radecka H. Oriented immobilization of His-tagged kinase RIO1 protein on redox active N-(IDA-like)-Cu(II) monolayer deposited on gold electrode—The base of electrochemical biosensor. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.02.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Jarocka U, Radecka H, Malinowski T, Michalczuk L, Radecki J. Detection of Prunus Necrotic Ringspot Virus in Plant Extracts with Impedimetric Immunosensor based on Glassy Carbon Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201200470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Jarocka U, Wąsowicz M, Radecka H, Malinowski T, Michalczuk L, Radecki J. Impedimetric Immunosensor for Detection of Plum Pox Virus in Plant Extracts. ELECTROANAL 2011. [DOI: 10.1002/elan.201100152] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|