1
|
Bachmaier S, Gould MK, Polatoglou E, Omelianczyk R, Brennand AE, Aloraini MA, Munday JC, Horn D, Boshart M, de Koning HP. Novel kinetoplastid-specific cAMP binding proteins identified by RNAi screening for cAMP resistance in Trypanosoma brucei. Front Cell Infect Microbiol 2023; 13:1204707. [PMID: 37475965 PMCID: PMC10354285 DOI: 10.3389/fcimb.2023.1204707] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclic AMP signalling in trypanosomes differs from most eukaryotes due to absence of known cAMP effectors and cAMP independence of PKA. We have previously identified four genes from a genome-wide RNAi screen for resistance to the cAMP phosphodiesterase (PDE) inhibitor NPD-001. The genes were named cAMP Response Protein (CARP) 1 through 4. Here, we report an additional six CARP candidate genes from the original sample, after deep sequencing of the RNA interference target pool retrieved after NPD-001 selection (RIT-seq). The resistance phenotypes were confirmed by individual RNAi knockdown. Highest level of resistance to NPD-001, approximately 17-fold, was seen for knockdown of CARP7 (Tb927.7.4510). CARP1 and CARP11 contain predicted cyclic AMP binding domains and bind cAMP as evidenced by capture and competition on immobilised cAMP. CARP orthologues are strongly enriched in kinetoplastid species, and CARP3 and CARP11 are unique to Trypanosoma. Localization data and/or domain architecture of all CARPs predict association with the T. brucei flagellum. This suggests a crucial role of cAMP in flagellar function, in line with the cell division phenotype caused by high cAMP and the known role of the flagellum for cytokinesis. The CARP collection is a resource for discovery of unusual cAMP pathways and flagellar biology.
Collapse
Affiliation(s)
- Sabine Bachmaier
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Matthew K. Gould
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Eleni Polatoglou
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Radoslaw Omelianczyk
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Ana E. Brennand
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Maha A. Aloraini
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jane C. Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Kostyuk AI, Tossounian MA, Panova AS, Thauvin M, Raevskii RI, Ezeriņa D, Wahni K, Van Molle I, Sergeeva AD, Vertommen D, Gorokhovatsky AY, Baranov MS, Vriz S, Messens J, Bilan DS, Belousov VV. Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives. Nat Commun 2022; 13:171. [PMID: 35013284 PMCID: PMC8748444 DOI: 10.1038/s41467-021-27796-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M-1s-1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Maria-Armineh Tossounian
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.,Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Anastasiya S Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75231, France.,Sorbonne Université, Collège Doctoral, Paris, 75005, France
| | - Roman I Raevskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Inge Van Molle
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Anastasia D Sergeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.,Biological Department, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Didier Vertommen
- de Duve Institute, MASSPROT platform, UCLouvain, 1200, Brussels, Belgium
| | | | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.,Laboratory of Medicinal Substances Chemistry, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75231, France.,Université de Paris, Paris, 75006, France.,Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium. .,Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium. .,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia. .,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia. .,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia. .,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia. .,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia. .,Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia.
| |
Collapse
|
5
|
Senutovitch N, Vernetti L, Boltz R, DeBiasio R, Gough A, Taylor DL. Fluorescent protein biosensors applied to microphysiological systems. Exp Biol Med (Maywood) 2015; 240:795-808. [PMID: 25990438 PMCID: PMC4464952 DOI: 10.1177/1535370215584934] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPSs). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and MPSs in real time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high-content screening. FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations, and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein, dramatically accelerated the adoption of studying living cells, since the genetic "labeling" of proteins became a relatively simple method that permitted the analysis of temporal-spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental sensitivity that, when combined with targeted proteins/peptides, created a new generation of FPBs. Examples of FPBs that are useful in MPS are presented, including the design, testing, and application in a liver MPS.
Collapse
Affiliation(s)
- Nina Senutovitch
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Robert Boltz
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schüler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kügler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 2013; 6:2. [PMID: 23459413 PMCID: PMC3586699 DOI: 10.3389/fnmol.2013.00002] [Citation(s) in RCA: 511] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/11/2013] [Indexed: 12/17/2022] Open
Abstract
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, “RCaMPs,” engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca2+-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca2+]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca2+ affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.
Collapse
Affiliation(s)
- Jasper Akerboom
- Janelia Farm Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|