1
|
Ponnamma D, Cabibihan JJ, Rajan M, Pethaiah SS, Deshmukh K, Gogoi JP, Pasha SKK, Ahamed MB, Krishnegowda J, Chandrashekar BN, Polu AR, Cheng C. Synthesis, optimization and applications of ZnO/polymer nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1210-1240. [PMID: 30813004 DOI: 10.1016/j.msec.2019.01.081] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/02/2018] [Accepted: 01/20/2019] [Indexed: 01/15/2023]
Abstract
Polymer composites have established an excellent position among the technologically essential materials because of their wide range of applications. An enormous research interest has been devoted to zinc oxide (ZnO) based polymer nanocomposites, due to their exceptional electrical, optical, thermal, mechanical, catalytic, and biomedical properties. This article provides a review of various polymer composites consisting of ZnO nanoparticles (NPs) as reinforcements, exhibiting excellent properties for applications such as the dielectric, sensing, piezoelectric, electromagnetic shielding, thermal conductivity and energy storage. The preparation methods of such composites including solution blending, in situ polymerization, and melt intercalation are also explained. The current challenges and potential applications of these composites are provided in order to guide future progress on the development of more promising materials. Finally, a detailed summary of the current trends in the field is presented to progressively show the future prospects for the development of ZnO containing polymer nanocomposite materials.
Collapse
Affiliation(s)
| | - John-John Cabibihan
- Mechanical and Industrial Engineering Department, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - S Sundar Pethaiah
- Gashubin Engineering Pvt Ltd, 8 New Industrial Road, 536200, Singapore
| | - Kalim Deshmukh
- Department of Physics, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, TN, India.
| | - Jyoti Prasad Gogoi
- Department of Physics, The Assam Kaziranga University, Jorhat 785006, India
| | - S K Khadheer Pasha
- Department of Physics, VIT-AP University, Amaravati Campus, Guntur 522501, Andhra Pradesh, India
| | - M Basheer Ahamed
- Department of Physics, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, TN, India
| | - Jagadish Krishnegowda
- Centre for Materials Science and Technology, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore 570006, India
| | - B N Chandrashekar
- Department of Materials Science and Engineering and Shenzhen Key Laboratory of Nanoimprint Technology, South University of Science and Technology, Shenzhen 518055, PR China
| | - Anji Reddy Polu
- Department of Physics, Vardhaman College of Engineering, Kacharam, Shamshabad, 501218 Hyderabad, Telangana, India
| | - Chun Cheng
- Department of Materials Science and Engineering and Shenzhen Key Laboratory of Nanoimprint Technology, South University of Science and Technology, Shenzhen 518055, PR China
| |
Collapse
|
2
|
Ren QH, Zhang Y, Lu HL, Chen HY, Zhang Y, Li DH, Liu WJ, Ding SJ, Jiang AQ, Zhang DW. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al₂O₃ spacer layer. NANOTECHNOLOGY 2016; 27:165705. [PMID: 26963868 DOI: 10.1088/0957-4484/27/16/165705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Surface-plasmon mediated photoluminescence emission enhancement has been investigated for ZnO nanowire (NW)/Pt nanoparticle (NP) nanostructures by inserting an Al2O3 spacer layer. The thickness of the Al2O3 spacer layer and of the Pt NPs capped on the ZnO NWs are well controlled by atomic layer deposition. It is found that the photoluminescence property of the ZnO NW/Al2O3/Pt hybrid structure is highly tunable with respect to the thickness of the inserted Al2O3 spacer layer. The highest enhancement (∼14 times) of the near band emission of ZnO NWs is obtained with an optimized Al2O3 spacer layer thickness of 10 nm leading to a ultraviolet-visible emission ratio of 271.2 compared to 18.8 for bare ZnO NWs. The enhancement of emission is influenced by a Förster-type non-radiative energy transfer process of the exciton energy from ZnO NWs to Pt NPs as well as the coupling effect between excitons of ZnO NWs and surface plasmons of Pt NPs. The highly versatile and tunable photoluminescence properties of Pt-coated ZnO NWs achieved by introducing an Al2O3 spacer layer demonstrate their potential application in highly efficient optoelectronic devices.
Collapse
Affiliation(s)
- Qing-Hua Ren
- State Key Laboratory of ASIC and System, Institute of Advanced Nanodevices, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Investigation on the Mechanical and Electrical Behavior of a Tuning Fork-Shaped Ionic Polymer Metal Composite Actuator with a Continuous Water Supply Mechanism. SENSORS 2016; 16:433. [PMID: 27023549 PMCID: PMC4850947 DOI: 10.3390/s16040433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 11/17/2022]
Abstract
This paper presents an innovative tuning fork-shaped ionic polymer metal composite (IPMC) actuator. With an integrated soft strain gauge and water supply mechanism (WSM), the surface strain of the actuator can be sensed in situ, and providing a continuous water supply maintains the water content inside the IPMC for long-term operation in air. The actuator was fabricated using a micromachining technique and plated with a nickel electrode. The device performance was experimentally characterized and compared with an actuator without a WSM. A large displacement of 1.5 mm was achieved for a 6 mm-long prong with 7-V dc actuation applied for 30 s. The measured current was analyzed using an electrochemical model. The results revealed that the faradaic current plays a crucial role during operation, particularly after 10 s. The measured strain confirms both the bending and axial strain generation during the open-and-close motion of the actuator prongs. Most of the water loss during device operation was due to evaporation rather than hydrolysis. The constructed WSM effectively maintained the water content inside the IPMC for long-term continuous operation.
Collapse
|
4
|
Feng GH, Liu KM. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance. SENSORS 2014; 14:8380-97. [PMID: 24824370 PMCID: PMC4063077 DOI: 10.3390/s140508380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022]
Abstract
This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.
Collapse
Affiliation(s)
- Guo-Hua Feng
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Kim-Min Liu
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 621, Taiwan.
| |
Collapse
|
5
|
Mahanti M, Basak D. Enhanced emission properties of Au/SiO2/ZnO nanorod layered structure: effect of SiO2 spacer layer and role of interfacial charge transfer. RSC Adv 2014. [DOI: 10.1039/c4ra00950a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Jo C, Pugal D, Oh IK, Kim KJ, Asaka K. Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.04.003] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kruusamäe K, Punning A, Aabloo A. Electrical model of a carbon-polymer composite (CPC) collision detector. SENSORS 2012; 12:1950-66. [PMID: 22438747 PMCID: PMC3304149 DOI: 10.3390/s120201950] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/24/2012] [Accepted: 02/06/2012] [Indexed: 11/16/2022]
Abstract
We present a study of an electrical model of electromechanically active carbon-polymer composite (CPC) with carbide-derived carbon (CDC) electrodes. The major focus is on investigation of surface electrode behavior upon external bending of the material. We show that electrical impedance measured from the surface of the CDC-based CPC can be used to determine the curvature of the material and, hence, the tip displacement of a CPC laminate in a cantilever configuration. It is also shown that by measuring surface signals in the process of an actuator’s work-cycle, we obtain a self-sensing collision-detecting CPC actuator that can be considered as a counterpart of biomimetic vibrissae.
Collapse
Affiliation(s)
- Karl Kruusamäe
- IMS Lab, Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | | | | |
Collapse
|