1
|
Lee S, Kim HJ, Choi JH, Jang HJ, Cho HB, Kim HR, Park JI, Park KS, Park KH. Light emitting diode (LED) irradiation of liposomes enhances drug encapsulation and delivery for improved cancer eradication. J Control Release 2024; 368:756-767. [PMID: 38499090 DOI: 10.1016/j.jconrel.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Liposomes are widely used as drug delivery nanoplatforms because of their versatility and biocompatibility; however, their ability to load certain drugs may be suboptimal. In this study, we generated liposomes using a combination of DSPE and DSPE-PEG-2 k lipids and loaded them with doxorubicin (DOX) and paclitaxel (PTX), to investigate the effects of light emitting diode (LED) irradiation on liposome structure and drug loading efficiency. Scanning and transmission electron microscopy revealed that the surface of liposomes irradiated with blue or near-infrared LEDs (LsLipo) was rougher and more irregular than that of non-LED-irradiated liposomes (NsLipo). Nuclear magnetic resonance analysis showed that the hydrogen peak originating from the lipid head groups was lower in LsLipo than in NsLipo preparations, indicating that LED irradiation changed the chemical and physical properties of the liposome. Structural changes, such as reduced rigidity, induced by LED irradiation, increased the loading efficiency of DOX and PTX. In vitro and in vivo experiments showed that LsLipo were more effective at inhibiting the growth of cancer cells than NsLipo. Our findings suggest that LED irradiation enhances the drug delivery efficacy of liposomes and offer new possibilities for improving drug delivery systems.
Collapse
Affiliation(s)
- Sujeong Lee
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Hye Jin Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Jin-Ho Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Hye Jung Jang
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Hui Bang Cho
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Hye-Ryoung Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Ji-In Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea.
| | - Keun-Hong Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si 13488, Republic of Korea.
| |
Collapse
|
2
|
Sahu TK, Kumar N, Chahal S, Jana R, Paul S, Mukherjee M, Tavabi AH, Datta A, Dunin-Borkowski RE, Valov I, Nayak A, Kumar P. Microwave synthesis of molybdenene from MoS 2. NATURE NANOTECHNOLOGY 2023; 18:1430-1438. [PMID: 37666941 PMCID: PMC10716048 DOI: 10.1038/s41565-023-01484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/06/2023] [Indexed: 09/06/2023]
Abstract
Dirac materials are characterized by the emergence of massless quasiparticles in their low-energy excitation spectrum that obey the Dirac Hamiltonian. Known examples of Dirac materials are topological insulators, d-wave superconductors, graphene, and Weyl and Dirac semimetals, representing a striking range of fundamental properties with potential disruptive applications. However, none of the Dirac materials identified so far shows metallic character. Here, we present evidence for the formation of free-standing molybdenene, a two-dimensional material composed of only Mo atoms. Using MoS2 as a precursor, we induced electric-field-assisted molybdenene growth under microwave irradiation. We observe the formation of millimetre-long whiskers following screw-dislocation growth, consisting of weakly bonded molybdenene sheets, which, upon exfoliation, show metallic character, with an electrical conductivity of ~940 S m-1. Molybdenene when hybridized with two-dimensional h-BN or MoS2, fetch tunable optical and electronic properties. As a proof of principle, we also demonstrate applications of molybdenene as a surface-enhanced Raman spectroscopy platform for molecular sensing, as a substrate for electron imaging and as a scanning probe microscope cantilever.
Collapse
Affiliation(s)
- Tumesh Kumar Sahu
- Department of Physics, Indian Institute of Technology Patna, Bihar, India
- Department of Physics, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - Nishant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihar, India
| | - Sumit Chahal
- Department of Physics, Indian Institute of Technology Patna, Bihar, India
| | - Rajkumar Jana
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Sumana Paul
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Moumita Mukherjee
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
| | - Ayan Datta
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
| | - Ilia Valov
- Peter Grünberg Institute (PGI-7), Forschungszentrum Jülich, Jülich, Germany.
- Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Alpana Nayak
- Department of Physics, Indian Institute of Technology Patna, Bihar, India.
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihar, India.
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Newcastle, New South Wales, Australia.
| |
Collapse
|
3
|
Hu Q, Jia H, Wang Y, Xu S. Force-Induced Visualization of Nucleic Acid Functions with Single-Nucleotide Resolution. SENSORS (BASEL, SWITZERLAND) 2023; 23:7762. [PMID: 37765816 PMCID: PMC10536483 DOI: 10.3390/s23187762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Nucleic acids are major targets for molecular sensing because of their wide involvement in biological functions. Determining their presence, movement, and binding specificity is thus well pursued. However, many current techniques are usually sophisticated, expensive, and often lack single-nucleotide resolution. In this paper, we report the force-induced visualization method that relies on the novel concept of mechanical force to determine the functional positions of nucleic acids with single-nucleotide resolution. The use of an adjustable mechanical force overcomes the variation of analyte concentration and differences in buffer conditions that are common in biological settings. Two examples are described to validate the method: one is probing the mRNA movement during ribosomal translocation, and the other is revealing the interacting sites and strengths of DNA-binding drugs based on the force amplitude. The flexibility of the method, simplicity of the associated device, and capability of multiplexed detection will potentially enable a broad range of biomedical applications.
Collapse
Affiliation(s)
- Qiongzheng Hu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA; (Q.H.)
| | - Haina Jia
- Department of Chemistry, University of Houston, Houston, TX 77204, USA; (Q.H.)
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA; (Q.H.)
| |
Collapse
|
4
|
Mei K, Yan T, Wang Y, Rao D, Peng Y, Wu W, Chen Y, Ren M, Yang J, Wu S, Zhang Q. Magneto-Nanomechanical Array Biosensor for Ultrasensitive Detection of Oncogenic Exosomes for Early Diagnosis of Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205445. [PMID: 36464637 DOI: 10.1002/smll.202205445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Exosomes are a class of nanoscale vesicles secreted by cells, which contain abundant information closely related to parental cells. The ultrasensitive detection of cancer-derived exosomes is highly significant for early non-invasive diagnosis of cancer. Here, an ultrasensitive nanomechanical sensor is reported, which uses a magnetic-driven microcantilever array to selectively detect oncogenic exosomes. A magnetic force, which can produce a far greater deflection of microcantilever than that produced by the intermolecular interaction force even with very low concentrations of target substances, is introduced. This method reduced the detection limit to less than 10 exosomes mL-1 . Direct detection of exosomes in the serum of patients with breast cancer and in healthy people showed a significant difference. This work improved the sensitivity by five orders of magnitude as compared to that of traditional nanomechanical sensing based on surface stress mode. This method can be applied parallelly for highly sensitive detection of other microorganisms (such as bacteria and viruses) by using different probe molecules, which can provide a supersensitive detection approach for cancer diagnosis, food safety, and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kainan Mei
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Tianhao Yan
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Yu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Depeng Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Min Ren
- Department of Breast Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jing Yang
- Department of Breast Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
5
|
Atomic Force Microscopy Application for the Measurement of Infliximab Concentration in Healthy Donors and Pediatric Patients with Inflammatory Bowel Disease. J Pers Med 2022; 12:jpm12060948. [PMID: 35743733 PMCID: PMC9225523 DOI: 10.3390/jpm12060948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 01/14/2023] Open
Abstract
The use of infliximab has completely changed the therapeutic landscape in inflammatory bowel disease. However, despite its proven efficacy to induce and maintain clinical remission, increasing evidence suggests that treatment failure may be associated with inadequate drug blood concentrations. The introduction of biosensors based on different nanostructured materials for the rapid quantification of drugs has been proposed for therapeutic drug monitoring. This study aimed to apply atomic force microscopy (AFM)-based nanoassay for the measurement of infliximab concentration in serum samples of healthy donors and pediatric IBD patients. This assay measured the height signal variation of a nanostructured gold surface covered with a self-assembled monolayer of alkanethiols. Inside this monolayer, we embedded the DNA conjugated with a tumor necrosis factor able to recognize the drug. The system was initially fine-tuned by testing known infliximab concentrations (0, 20, 30, 40, and 50 nM) in buffer and then spiking the same concentrations of infliximab into the sera of healthy donors, followed by testing pediatric IBD patients. A good correlation between height variation and drug concentration was found in the buffer in both healthy donors and pediatric IBD patients (p-value < 0.05), demonstrating the promising use of AFM nanoassay in TDM.
Collapse
|
6
|
Sarkar A. Biosensing, Characterization of Biosensors, and Improved Drug Delivery Approaches Using Atomic Force Microscopy: A Review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.798928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since its invention, atomic force microscopy (AFM) has come forth as a powerful member of the “scanning probe microscopy” (SPM) family and an unparallel platform for high-resolution imaging and characterization for inorganic and organic samples, especially biomolecules, biosensors, proteins, DNA, and live cells. AFM characterizes any sample by measuring interaction force between the AFM cantilever tip (the probe) and the sample surface, and it is advantageous over other SPM and electron micron microscopy techniques as it can visualize and characterize samples in liquid, ambient air, and vacuum. Therefore, it permits visualization of three-dimensional surface profiles of biological specimens in the near-physiological environment without sacrificing their native structures and functions and without using laborious sample preparation protocols such as freeze-drying, staining, metal coating, staining, or labeling. Biosensors are devices comprising a biological or biologically extracted material (assimilated in a physicochemical transducer) that are utilized to yield electronic signal proportional to the specific analyte concentration. These devices utilize particular biochemical reactions moderated by isolated tissues, enzymes, organelles, and immune system for detecting chemical compounds via thermal, optical, or electrical signals. Other than performing high-resolution imaging and nanomechanical characterization (e.g., determining Young’s modulus, adhesion, and deformation) of biosensors, AFM cantilever (with a ligand functionalized tip) can be transformed into a biosensor (microcantilever-based biosensors) to probe interactions with a particular receptors of choice on live cells at a single-molecule level (using AFM-based single-molecule force spectroscopy techniques) and determine interaction forces and binding kinetics of ligand receptor interactions. Targeted drug delivery systems or vehicles composed of nanoparticles are crucial in novel therapeutics. These systems leverage the idea of targeted delivery of the drug to the desired locations to reduce side effects. AFM is becoming an extremely useful tool in figuring out the topographical and nanomechanical properties of these nanoparticles and other drug delivery carriers. AFM also helps determine binding probabilities and interaction forces of these drug delivery carriers with the targeted receptors and choose the better agent for drug delivery vehicle by introducing competitive binding. In this review, we summarize contributions made by us and other researchers so far that showcase AFM as biosensors, to characterize other sensors, to improve drug delivery approaches, and to discuss future possibilities.
Collapse
|
7
|
Martinazzo J, Brezolin AN, Paschoalin RT, Soares AC, Steffens J, Steffens C. Sexual pheromone detection using PANI·Ag nanohybrid and PANI/PSS nanocomposite nanosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3900-3908. [PMID: 34558574 DOI: 10.1039/d1ay00987g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, polyaniline/poly(styrene sulfonate) (PANI/PSS) nanocomposite and polyaniline·silver (PANI·Ag) nanohybrid thin films were obtained in cantilever nanosensors surface. The developed films were characterized in relation to topography, roughness, thickness, height, and structural properties. The topography study revealed that both films have a globular morphology, thickness and height in nanoscale. The gas sensing performance was investigated for sexual pheromone from the neotropical brown stink bug, Euschistus heros (F.). The sensitivities of both nanosensors based on PANI/PSS nanocomposite and PANI·Ag nanohybrid films were similar. The PANI·Ag nanohybrid nanosensor had a limit of detection of less than 3.1 ppq and limit of quantification of 10.05 ppq. The nanosensor layers were analyzed by UV-vis and FTIR showing the incorporation of Ag nanoparticles in the nanohybrid. We found that pheromone compound was adsorbed in sensing layer resulting in a reduction in the resonance frequency. The detection mechanism help us understand the good results of LOD, LOQ, sensitivity, selectivity and repeatability. The presented device has great potential for detection of the sexual pheromone from E. heros.
Collapse
Affiliation(s)
- Janine Martinazzo
- Food Engineering, URI - Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| | | | - Rafaella Takehara Paschoalin
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics, University of São Paulo (USP), PO Box 369, 13566-590 São Carlos, SP, Brazil
| | - Juliana Steffens
- Food Engineering, URI - Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| | - Clarice Steffens
- Food Engineering, URI - Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| |
Collapse
|
8
|
Graboski AM, Zakrzevski CA, Shimizu FM, Paschoalin RT, Soares AC, Steffens J, Paroul N, Steffens C. Electronic Nose Based on Carbon Nanocomposite Sensors for Clove Essential Oil Detection. ACS Sens 2020; 5:1814-1821. [PMID: 32515185 DOI: 10.1021/acssensors.0c00636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work describes the development of an electronic nose (e-nose) based on carbon nanocomposites to detect clove essential oil (CEO), eugenol (EUG), and eugenyl acetate (EUG.ACET). Our e-nose system comprises an array of six sensing units modified with nanocomposites of poly(aniline), graphene oxide, and multiwalled carbon nanotubes doped with different acids, dodecyl benzene sulfonic acid, camphorsulfonic acid, and hydrochloric acid. The e-nose presented an excellent analytical performance to the detected analytes (CEO, EUG, and EUG.ACET) with high sensitivity and reversibility. The limit of detection was lower than 1.045 ppb, with response time (<13.26 s) and recovery time (<106.29 s) and low hysteresis. Information visualization methods (PCA and IDMAP) demonstrated that the e-nose was efficient to discriminate the different concentrations of analyte volatile oil compounds. PM-IRRAS measurements suggest that the doping mechanism of molecular architectures is composed of a change in the oscillation energy of the characteristic dipoles and changes in the molecular orientation dipoles C═C and C═O at 1615 and 1740 cm-1, respectively. The experimental results indicate that our e-nose system is promising for a rapid analysis method to monitor the quality of essential oils.
Collapse
Affiliation(s)
- Adriana M. Graboski
- Food Engineering, URI—Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, Rio Grande do Sul, Brazil
| | - Claudio A. Zakrzevski
- Food Engineering, URI—Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, Rio Grande do Sul, Brazil
| | - Flavio M. Shimizu
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13566-590 São Carlos, São Paulo, Brazil
| | - Rafaella T. Paschoalin
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13566-590 São Carlos, São Paulo, Brazil
| | - Andrey C. Soares
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, São Paulo, Brazil
| | - Juliana Steffens
- Food Engineering, URI—Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, Rio Grande do Sul, Brazil
| | - Natalia Paroul
- Food Engineering, URI—Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, Rio Grande do Sul, Brazil
| | - Clarice Steffens
- Food Engineering, URI—Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
10
|
Basu AK, Basu A, Bhattacharya S. Micro/Nano fabricated cantilever based biosensor platform: A review and recent progress. Enzyme Microb Technol 2020; 139:109558. [PMID: 32732024 DOI: 10.1016/j.enzmictec.2020.109558] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Recent trends in biosensing research have motivated scientists and research professionals to investigate the development of miniaturized bioanalytical devices to make them portable, label-free and smaller in size. The performance of the cantilever-based devices which is one of the very important domains of sensitive field level detection has improved significantly with the development of new micro/nanofabrication technologies and surface functionalization techniques. The cantilevers have scaled down to Nano from micro-level and have become exceptionally sensitive and also have some anomalous associated properties due to the scale. In this review we have discussed about fundamental principles of cantilever operation, detection methods, and previous, present and future approaches of study through cantilever-based sensing platform. Other than that, we have also discussed the past major bio-sensing efforts through micro/nano cantilevers and about recent progress in the field.
Collapse
Affiliation(s)
- Aviru Kumar Basu
- Design Programme, Indian Institute of Technology, Kanpur, U.P. 208016, India; Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India; Singapore University of Technology and Design, 487372 Singapore
| | - Adreeja Basu
- Department of Biological Sciences, St. John's University, New York, N.Y 11439, USA
| | - Shantanu Bhattacharya
- Design Programme, Indian Institute of Technology, Kanpur, U.P. 208016, India; Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India.
| |
Collapse
|
11
|
Venturelli L, Kohler AC, Stupar P, Villalba MI, Kalauzi A, Radotic K, Bertacchi M, Dinarelli S, Girasole M, Pešić M, Banković J, Vela ME, Yantorno O, Willaert R, Dietler G, Longo G, Kasas S. A perspective view on the nanomotion detection of living organisms and its features. J Mol Recognit 2020; 33:e2849. [PMID: 32227521 DOI: 10.1002/jmr.2849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The insurgence of newly arising, rapidly developing health threats, such as drug-resistant bacteria and cancers, is one of the most urgent public-health issues of modern times. This menace calls for the development of sensitive and reliable diagnostic tools to monitor the response of single cells to chemical or pharmaceutical stimuli. Recently, it has been demonstrated that all living organisms oscillate at a nanometric scale and that these oscillations stop as soon as the organisms die. These nanometric scale oscillations can be detected by depositing living cells onto a micro-fabricated cantilever and by monitoring its displacements with an atomic force microscope-based electronics. Such devices, named nanomotion sensors, have been employed to determine the resistance profiles of life-threatening bacteria within minutes, to evaluate, among others, the effect of chemicals on yeast, neurons, and cancer cells. The data obtained so far demonstrate the advantages of nanomotion sensing devices in rapidly characterizing microorganism susceptibility to pharmaceutical agents. Here, we review the key aspects of this technique, presenting its major applications. and detailing its working protocols.
Collapse
Affiliation(s)
- Leonardo Venturelli
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anne-Céline Kohler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petar Stupar
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maria I Villalba
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Aleksandar Kalauzi
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotic
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | | | - Simone Dinarelli
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Marco Girasole
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasna Banković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maria E Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET-CCT La Plata), Universidad Nacional de La Plata, La Plata, Argentina
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ronnie Willaert
- ARG VUB-UGent NanoMicrobiology, IJRG VUB-EPFL BioNanotechnology & NanoMedicine, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Longo
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Sandor Kasas
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Venkateshaiah A, Padil VV, Nagalakshmaiah M, Waclawek S, Černík M, Varma RS. Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives. Polymers (Basel) 2020; 12:E512. [PMID: 32120773 PMCID: PMC7182842 DOI: 10.3390/polym12030512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Natural biopolymers, a class of materials extracted from renewable sources, is garnering interest due to growing concerns over environmental safety; biopolymers have the advantage of biocompatibility and biodegradability, an imperative requirement. The synthesis of nanoparticles and nanofibers from biopolymers provides a green platform relative to the conventional methods that use hazardous chemicals. However, it is challenging to characterize these nanoparticles and fibers due to the variation in size, shape, and morphology. In order to evaluate these properties, microscopic techniques such as optical microscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) are essential. With the advent of new biopolymer systems, it is necessary to obtain insights into the fundamental structures of these systems to determine their structural, physical, and morphological properties, which play a vital role in defining their performance and applications. Microscopic techniques perform a decisive role in revealing intricate details, which assists in the appraisal of microstructure, surface morphology, chemical composition, and interfacial properties. This review highlights the significance of various microscopic techniques incorporating the literature details that help characterize biopolymers and their derivatives.
Collapse
Affiliation(s)
- Abhilash Venkateshaiah
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Vinod V.T. Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Malladi Nagalakshmaiah
- IMT Lille Douai, Department of Polymers and Composites Technology and Mechanical Engineering (TPCIM), 941 rue Charles Bourseul, CS10838, F-59508 Douai, France
| | - Stanisław Waclawek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
13
|
Iqbal KM, Bertino MF, Shah MR, Ehrhardt CJ, Yadavalli VK. Nanoscale Phenotypic Textures of Yersinia pestis Across Environmentally-Relevant Matrices. Microorganisms 2020; 8:microorganisms8020160. [PMID: 31979277 PMCID: PMC7074701 DOI: 10.3390/microorganisms8020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022] Open
Abstract
The persistence of bacterial pathogens within environmental matrices plays an important role in the epidemiology of diseases, as well as impacts biosurveillance strategies. However, the adaptation potentials, mechanisms for survival, and ecological interactions of pathogenic bacteria such as Yersinia pestis are largely uncharacterized owing to the difficulty of profiling their phenotypic signatures. In this report, we describe studies on Y. pestis organisms cultured within soil matrices, which are among the most important reservoirs for their propagation. Morphological (nanoscale) and phenotypic analysis are presented at the single cell level conducted using Atomic Force Microscopy (AFM), coupled with biochemical profiles of bulk populations using Fatty Acid Methyl Ester Profiling (FAME). These studies are facilitated by a novel, customizable, 3D printed diffusion chamber that allows for control of the external environment and easy harvesting of cells. The results show that incubation within soil matrices lead to reduction of cell size and an increase in surface hydrophobicity. FAME profiles indicate shifts in unsaturated fatty acid compositions, while other fatty acid components of the phospholipid membrane or surface lipids remained consistent across culturing conditions, suggesting that phenotypic shifts may be driven by non-lipid components of Y. pestis.
Collapse
Affiliation(s)
- Kanwal M. Iqbal
- H.E.J. Research Institute, University of Karachi, Pakistan 75270; (K.M.I.); (M.R.S.)
| | - Massimo F. Bertino
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Muhammed R. Shah
- H.E.J. Research Institute, University of Karachi, Pakistan 75270; (K.M.I.); (M.R.S.)
| | | | - Vamsi K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence: ; Tel.: +1-804-828-0587
| |
Collapse
|
14
|
Facile spectroscopy and atomic force microscopy for the discrimination of α and β thalassemia traits and diseases: A photodiagnosis approach. Photodiagnosis Photodyn Ther 2019; 27:149-155. [DOI: 10.1016/j.pdpdt.2019.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
|
15
|
Understanding Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids by Insights from Molecular Dynamics Simulations. Sci Rep 2019; 9:10763. [PMID: 31341192 PMCID: PMC6656760 DOI: 10.1038/s41598-019-46999-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Interest in nanomaterials for subsurface applications has grown markedly due to their successful application in a variety of disciplines, such as biotechnology and medicine. Nevertheless, nanotechnology application in the petroleum industry presents greater challenges to implementation because of the harsh conditions (i.e. high temperature, high pressure, and high salinity) that exist in the subsurface that far exceed those present in biological applications. The most common subsurface nanomaterial failures include colloidal instability (aggregation) and sticking to mineral surfaces (irreversible retention). We previously reported an atomic force microscopy (AFM) study on the calcium-mediated adhesion of nanomaterials in reservoir fluids (S. L. Eichmann and N. A. Burnham, Sci. Rep. 7, 11613, 2017), where we discovered that the functionalized and bare AFM tips showed mitigated adhesion forces in calcium ion rich fluids. Herein, molecular dynamics reveal the molecular-level details in the AFM experiments. Special attention was given to the carboxylate-functionalized AFM tips because of their prominent ion-specific effects. The simulation results unambiguously demonstrated that in calcium ion rich fluids, the strong carboxylate-calcium ion complexes prevented direct carboxylate-calcite interactions, thus lowering the AFM adhesion forces. We performed the force measurement simulations on five representative calcite crystallographic surfaces and observed that the adhesion forces were about two to three fold higher in the calcium ion deficient fluids compared to the calcium ion rich fluids for all calcite surfaces. Moreover, in calcium ion deficient fluids, the adhesion forces were significantly stronger on the calcite surfaces with higher calcium ion exposures. This indicated that the interactions between the functionalized AFM tips and the calcite surfaces were mainly through carboxylate interactions with the calcium ions on calcite surfaces. Finally, when analyzing the order parameters of the tethered functional groups, we observed significantly different behavior of the alkanethiols depending on the absence or presence of calcium ions. These observations agreed well with AFM experiments and provided new insights for the competing carboxylate/calcite/calcium ion interactions.
Collapse
|
16
|
Characterisation of the Material and Mechanical Properties of Atomic Force Microscope Cantilevers with a Plan-View Trapezoidal Geometry. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cantilever devices have found applications in numerous scientific fields and instruments, including the atomic force microscope (AFM), and as sensors to detect a wide range of chemical and biological species. The mechanical properties, in particular, the spring constant of these devices is crucial when quantifying adhesive forces, material properties of surfaces, and in determining deposited mass for sensing applications. A key component in the spring constant of a cantilever is the plan-view shape. In recent years, the trapezoidal plan-view shape has become available since it offers certain advantages to fast-scanning AFM and can improve sensor performance in fluid environments. Euler beam equations relating cantilever stiffness to the cantilever dimensions and Young’s modulus have been proven useful and are used extensively to model cantilever mechanical behaviour and calibrate the spring constant. In this work, we derive a simple correction factor to the Euler beam equation for a beam-shaped cantilever that is applicable to any cantilever with a trapezoidal plan-view shape. This correction factor is based upon previous analytical work and simplifies the application of the previous researchers formula. A correction factor to the spring constant of an AFM cantilever is also required to calculate the torque produced by the tip when it contacts the sample surface, which is also dependent on the plan-view shape. In this work, we also derive a simple expression for the torque for triangular plan-view shaped cantilevers and show that for the current generation of trapezoidal plan-view shaped AFM cantilevers, this will be a good approximation. We shall apply both these correction factors to determine Young’s modulus for a range of trapezoidal-shaped AFM cantilevers, which are specially designed for fast-scanning. These types of AFM probes are much smaller in size when compared to standard AFM probes. In the process of analysing the mechanical properties of these cantilevers, important insights are also gained into their spring constant calibration and dimensional factors that contribute to the variability in their spring constant.
Collapse
|
17
|
Ballen SC, Graboski AM, Manzoli A, Steffens J, Steffens C. Monitoring Aroma Release in Gummy Candies During The Storage Using Electronic Nose. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01496-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Tiggemann L, Ballen SC, Bocalon CM, Graboski AM, Manzoli A, Steffens J, Valduga E, Steffens C. Electronic nose system based on polyaniline films sensor array with different dopants for discrimination of artificial aromas. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Wang L, Du J, Zhou Y, Wang Y. Safety of nanosuspensions in drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:455-469. [PMID: 27558350 DOI: 10.1016/j.nano.2016.08.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/31/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023]
Abstract
Nanosuspension technology is currently undergoing dramatic expansion in pharmaceutical science research and development. However, most of the research efforts generally focus on formulation and potential beneficial description, while the research into potential toxicological effects and implications (i.e., in vivo safety and health effects) is lacking. This review identifies some of the key factors for studying nanosuspension safety and the potential undesired effects related to nanosuspension exposure. The key factors for discussion herein include particle characterization, preparation approach, composition, and excipients of the formulation and sterilization methods. A few comments on the primary and required safety aspects of each administration route are also reviewed.
Collapse
Affiliation(s)
- Lulu Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, PR China
| | - Juan Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, PR China
| | - Yuqi Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, PR China
| | - Yancai Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, PR China.
| |
Collapse
|
20
|
Bhattacharjee M, Pasumarthi V, Chaudhuri J, Singh AK, Nemade H, Bandyopadhyay D. Self-spinning nanoparticle laden microdroplets for sensing and energy harvesting. NANOSCALE 2016; 8:6118-28. [PMID: 26931770 DOI: 10.1039/c6nr00217j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exposure of a volatile organic vapour could set in powerful rotational motion a microdroplet composed of an aqueous salt solution loaded with metal nanoparticles. The solutal Marangoni motion on the surface originating from the sharp difference in the surface tension of water and organic vapour stimulated the strong vortices inside the droplet. The vapour sources of methanol, ethanol, diethyl ether, toluene, and chloroform stimulated motions of different magnitudes could easily be correlated to the surface tension gradient on the drop surface. Interestingly, when the nanoparticle laden droplet of aqueous salt solution was connected to an external electric circuit through a pair of electrodes, an ∼85-95% reduction in the electrical resistance was observed across the spinning droplet. The extent of reduction in the resistance was found to have a correlation with the difference in the surface tension of the vapour source and the water droplet, which could be employed to distinguish the vapour sources. Remarkably, the power density of the same prototype was estimated to be around 7 μW cm(-2), which indicated the potential of the phenomenon in converting surface energy into electrical in a non-destructive manner and under ambient conditions. Theoretical analysis uncovered that the difference in the ζ-potential near the electrodes was the major reason for the voltage generation. The prototype could also detect the repeated exposure and withdrawal of vapour sources, which helped in the development of a proof-of-concept detector to sense alcohol issuing out of the human breathing system.
Collapse
Affiliation(s)
- Mitradip Bhattacharjee
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Viswanath Pasumarthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India
| | - Joydip Chaudhuri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India
| | - Amit Kumar Singh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Harshal Nemade
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India. and Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India. and Department of Chemical Engineering, Indian Institute of Technology Guwahati, India
| |
Collapse
|
21
|
Leite FL, Hausen M, Oliveira GS, Brum DG, Oliveira ON. Nanoneurobiophysics: new challenges for diagnosis and therapy of neurologic disorders. Nanomedicine (Lond) 2015; 10:3417-9. [DOI: 10.2217/nnm.15.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Fabio L Leite
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry & Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, 18052-780, São Paulo, Brazil
| | - Moema Hausen
- Neurology, Psychology & Psychiatry Department, Medical College of Botucatu, State University of São Paulo (UNESP), São Paulo, Brazil
| | - Guedmiller S Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP, Brazil
| | - Doralina G Brum
- Neurology, Psychology & Psychiatry Department, Medical College of Botucatu, State University of São Paulo (UNESP), São Paulo, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP, Brazil
| |
Collapse
|
22
|
Wang Q, Luo B, Yang X, Wang K, Liu L, Du S, Li Z. Elucidation of the effect of aptamer immobilization strategies on the interaction between cell and its aptamer using atomic force spectroscopy. J Mol Recognit 2015; 29:151-8. [PMID: 26530526 DOI: 10.1002/jmr.2514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022]
Abstract
The immobilization strategy of cell-specific aptamers is of great importance for studying the interaction between a cell and its aptamer. However, because of the difficulty of studying living cell, there have not been any systematic reports about the effect of immobilization strategies on the binding ability of an immobilized aptamer to its target cell. Because atomic force spectroscopy (AFM) could not only be suitable for the investigation of living cell under physiological conditions but also obtains information reflecting the intrinsic properties of individuals, the effect of immobilization strategies on the interaction of aptamer/human hepatocarcinoma cell Bel-7404 was successively evaluated using AFM here. Two different immobilization methods, including polyethylene glycol immobilization method and glutaraldehyde immobilization method were used, and the factors, such as aptamer orientation, oligodeoxythymidine spacers and dodecyl spacers, were investigated. Binding events measured by AFM showed that a similar unbinding force was obtained regardless of the change of the aptamer orientation, the immobilization method, and spacers, implying that the biophysical characteristics of the aptamer at the molecular level remain undisturbed. However, it showed that the immobilization orientation, immobilization method, and spacers could alter the binding probability of aptamer/Bel-7404 cell. Presumably, these factors may affect the accessibility of the aptamer toward its target cell. These results may provide valuable information for aptamer sensor platforms including ultrasensitive biosensor design.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Bianxia Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Lin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shasha Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zhiping Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
23
|
Abstract
Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
24
|
Investigation on blind tip reconstruction errors caused by sample features. SENSORS 2014; 14:23159-75. [PMID: 25490584 PMCID: PMC4299057 DOI: 10.3390/s141223159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022]
Abstract
Precision measurements of a nanoscale sample surface using an atomic force microscope (AFM) require a precise quantitative knowledge of the 3D tip shape. Blind tip reconstruction (BTR), established by Villarrubia, gives an outer bound with larger errors if the tip characterizer is not appropriate. In order to explore the errors of BTR, a series of simulation experiments based on a conical model were carried out. The results show that, to reconstruct the tip precisely, the cone angle of the tip characterizer must be smaller than that of the tip. Furthermore, the errors decrease as a function of the tip cone angle and increase linearly with the sample radius of curvature, irrespective of the tip radius of curvature. In particular, for sharp (20 nm radius) and blunt (80 nm radius) tips, the radius of curvature of the tip characterizer must be smaller than 5 nm. Based on these simulation results, a local error model of BTR was established. The maximum deviation between the errors derived from the model and the simulated experiments is 1.22 nm. Compared with the lateral resolution used in the above simulated experiments (4 nm/pixel), it is valid to ignore the deviations and consider the local error model of BTR is indeed in quantitative agreement with the simulation results. Finally, two simulated ideal structures are proposed here, together with their corresponding real samples. The simulation results show they are suitable for BTR.
Collapse
|
25
|
Steffens C, Leite FL, Manzoli A, Sandoval RD, Fatibello O, Herrmann PSP. Microcantilever sensors coated with doped polyaniline for the detection of water vapor. SCANNING 2014; 36:311-316. [PMID: 23817929 DOI: 10.1002/sca.21109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
In the present work, PANI (polyaniline) emeraldine salt (doped) and base (dedoped) were used as the sensitive layer of a silicon microcantilever, and the mechanical response (deflection) of the bimaterial (coated microcantilever) was investigated under the influence of humidity. PANI in the emeraldine base oxidation state was obtained by interfacial synthesis and was deposited on the microcantilever surface by spin-coating (dedoped). Next, the conducting polymer was doped with 1 M HCl (hydrochloric acid). A four-quadrant AFM head with an integrated laser and a position-sensitive detector (AFM Veeco Dimension V) was used to measure the optical deflection of the coated microcantilever. The deflection of the coated (doped and undoped PANI) and uncoated microcantilever was measured under different humidities (in triplicate) at room pressure and temperature in a closed chamber to evaluate the sensor's sensitivity. The relative humidity (RH) in the chamber was varied from 20% to 70% using dry nitrogen as a carrier gas, which was passed through a bubbler containing water to generate humidity. The results showed that microcantilevers coated with sensitive layers of doped and undoped PANI films were sensitive (12,717 ± 6% and 6,939 ± 8%, respectively) and provided good repeatability (98.6 ± 0.015% and 99 ± 0.01%, respectively) after several cycles of exposure to RH. The microcantilever sensor without a PANI coating (uncoated) was not sensitive to humidity. The strong effect of doping on the sensitivity of the sensor was attributed to an increased adsorption of water molecules dissociated at imine nitrogen centers, which improves the performance of the coated microcantilever sensor. Moreover, microcantilever sensors coated with a sensitive layer provided good results in several cycles of exposure to RH (%).
Collapse
Affiliation(s)
- C Steffens
- Department of Biotechnology, Federal University de São Carlos (UFSCar), SP, Brazil; National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentation, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
What Can Nanomedicine Learn from the Current Developments of Nanotechnology? Nanomedicine (Lond) 2014. [DOI: 10.1007/978-1-4614-2140-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Oliveira GS, Leite FL, Amarante AM, Franca EF, Cunha RA, Briggs JM, Freitas LC. Molecular modeling of enzyme attachment on AFM probes. J Mol Graph Model 2013; 45:128-36. [DOI: 10.1016/j.jmgm.2013.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/18/2013] [Accepted: 08/06/2013] [Indexed: 11/30/2022]
|
28
|
|
29
|
da Silva AC, Deda DK, da Róz AL, Prado RA, Carvalho CC, Viviani V, Leite FL. Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection. SENSORS 2013; 13:1477-89. [PMID: 23348034 PMCID: PMC3649369 DOI: 10.3390/s130201477] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/06/2013] [Accepted: 01/06/2013] [Indexed: 11/16/2022]
Abstract
The use of agrochemicals has increased considerably in recent years, and consequently, there has been increased exposure of ecosystems and human populations to these highly toxic compounds. The study and development of methodologies to detect these substances with greater sensitivity has become extremely relevant. This article describes, for the first time, the use of atomic force spectroscopy (AFS) in the detection of enzyme-inhibiting herbicides. A nanobiosensor based on an atomic force microscopy (AFM) tip functionalised with the acetolactate synthase (ALS) enzyme was developed and characterised. The herbicide metsulfuron-methyl, an ALS inhibitor, was successfully detected through the acquisition of force curves using this biosensor. The adhesion force values were considerably higher when the biosensor was used. An increase of ~250% was achieved relative to the adhesion force using an unfunctionalised AFM tip. This considerable increase was the result of a specific interaction between the enzyme and the herbicide, which was primarily responsible for the efficiency of the nanobiosensor. These results indicate that this methodology is promising for the detection of herbicides, pesticides, and other environmental contaminants.
Collapse
Affiliation(s)
- Aline C.N. da Silva
- Multidisciplinary Laboratory of Nanoneurobiophysics, Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (A.C.N.S.); (A.L.R.)
| | - Daiana K. Deda
- Multidisciplinary Laboratory of Nanoneurobiophysics, Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (A.C.N.S.); (A.L.R.)
- Authors to whom correspondence should be addressed; E-Mails: (D.K.D.); (F.L.L.); Tel./Fax: +55-3229-6014
| | - Alessandra L. da Róz
- Multidisciplinary Laboratory of Nanoneurobiophysics, Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (A.C.N.S.); (A.L.R.)
| | - Rogilene A. Prado
- Laboratory of Biochemistry and Biotechnology of Bioluminescence, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (R.A.P.); (C.C.C.); (V.V.)
| | - Camila C. Carvalho
- Laboratory of Biochemistry and Biotechnology of Bioluminescence, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (R.A.P.); (C.C.C.); (V.V.)
| | - Vadim Viviani
- Laboratory of Biochemistry and Biotechnology of Bioluminescence, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (R.A.P.); (C.C.C.); (V.V.)
| | - Fabio L. Leite
- Multidisciplinary Laboratory of Nanoneurobiophysics, Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (A.C.N.S.); (A.L.R.)
- Authors to whom correspondence should be addressed; E-Mails: (D.K.D.); (F.L.L.); Tel./Fax: +55-3229-6014
| |
Collapse
|