1
|
Schaefer C, Allers M, Hitzemann M, Nitschke A, Kobelt T, Mörtel M, Schröder S, Ficks A, Zimmermann S. Reliable Detection of Chemical Warfare Agents Using High Kinetic Energy Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2008-2019. [PMID: 39013159 PMCID: PMC11311216 DOI: 10.1021/jasms.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) ionize and separate ions at reduced pressures of 10-40 mbar and over a wide range of reduced electric field strengths E/N of up to 120 Td. Their reduced operating pressure is distinct from that of conventional drift tube ion mobility spectrometers that operate at ambient pressure for trace compound detection. High E/N can lead to a field-induced fragmentation pattern that provides more specific structural information about the analytes. In addition, operation at high E/N values adds the field dependence of ion mobility as an additional separation dimension to low-field ion mobility, making interfering compounds less likely to cause a false positive alarm. In this work, we study the chemical warfare agents tabun (GA), sarin (GB), soman (GD), cyclosarin (GF) and sulfur mustard (HD) in a HiKE-IMS at variable E/N in both the reaction and the drift region. The results show that varying E/N can lead to specific fragmentation patterns at high E/N values combined with molecular signals at low E/N. Compared to the operation at a single E/N value in the drift region, the variation of E/N in the drift region also provides the analyte-specific field dependence of ion mobility as additional information. The accumulated data establish a unique fingerprint for each analyte that allows for reliable detection of chemical warfare agents even in the presence of interfering compounds with similar low-field ion mobilities, thus reducing false positives.
Collapse
Affiliation(s)
- Christoph Schaefer
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Maria Allers
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Moritz Hitzemann
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Alexander Nitschke
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Tim Kobelt
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Max Mörtel
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Stefanie Schröder
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Arne Ficks
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Stefan Zimmermann
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| |
Collapse
|
2
|
Grabka M, Jasek K, Witkiewicz Z. Hydrogen-Bond Acidic Materials in Acoustic Wave Sensors for Nerve Chemical Warfare Agents' Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2477. [PMID: 38676093 PMCID: PMC11054250 DOI: 10.3390/s24082477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The latest trends in the field of the on-site detection of chemical warfare agents (CWAs) involve increasing the availability of point detectors to enhance the operational awareness of commanders and soldiers. Among the intensively developed concepts aimed at meeting these requirements, wearable detectors, gas analyzers as equipment for micro- and mini-class unmanned aerial vehicles (UAVs), and distributed sensor networks can be mentioned. One of the analytical techniques well suited for use in this field is surface acoustic wave sensors, which can be utilized to construct lightweight, inexpensive, and undemanding gas analyzers for detecting CWAs. This review focuses on the intensively researched and developed variant of this technique, utilizing absorptive sensor layers dedicated for nerve CWAs' detection. The paper describes the mechanism of the specific interaction occurring between the target analyte and the sensing layer, which serves as the foundation for their selective detection. The main section of this paper includes a chronological review of individual achievements in the field, largely based on the peer-reviewed scientific literature dating back to the mid-1980s to the present day. The final section presents conclusions regarding the prospects for the development of this analytical technique in the targeted application.
Collapse
Affiliation(s)
- Michał Grabka
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 00-908 Warsaw, Poland; (K.J.); (Z.W.)
| | | | | |
Collapse
|
3
|
Chen K, Li L, Li P. Hadamard Transform Ion Mobility Spectrometry Based on Matrix Encoding Modulation. SENSORS (BASEL, SWITZERLAND) 2023; 23:6267. [PMID: 37514561 PMCID: PMC10383960 DOI: 10.3390/s23146267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Ion mobility spectrometry (IMS) has been widely used for the on-site detection of trace chemicals, but continue to suffer from a low duty cycle of ion injection. The Hadamard transform ion mobility spectrometry (HT-IMS) technique was employed to address the problem with increased signal-to-noise ratio (SNR). However, in this work, through simulation, a certain deviation between the mathematical principle of Hadamard transform and actual data collection process was found, which resulted in a distortion of the baseline in the spectrum. The reason behind this problem was analyzed and a novel IMS based on Sylvester-type Hadamard matrix encoding modulation (Sylvester-HT-IMS), together with a set of date collection and processing technique, was proposed. Sylvester-HT-IMS offered much improved quality of deconvoluted spectrum and overall performance in the simulation. In experimental verification, with reactant ions and product ions characterized, Sylvester-HT-IMS showed improved SNR and ion discrimination over both conventional signal-averaged IMS (SA-IMS) and HT-IMS, providing an alternative method for multiplexed IMS.
Collapse
Affiliation(s)
- Ke Chen
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Lingfeng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Witkiewicz Z, Jasek K, Grabka M. Semiconductor Gas Sensors for Detecting Chemical Warfare Agents and Their Simulants. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23063272. [PMID: 36991985 PMCID: PMC10058525 DOI: 10.3390/s23063272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 05/27/2023]
Abstract
On-site detection of chemical warfare agents (CWAs) can be performed by various analytical techniques. Devices using well-established techniques such as ion mobility spectrometry, flame photometry, infrared and Raman spectroscopy or mass spectrometry (usually combined with gas chromatography) are quite complex and expensive to purchase and operate. For this reason, other solutions based on analytical techniques well suited to portable devices are still being sought. Analyzers based on simple semiconductor sensors may be a potential alternative to the currently used CWA field detectors. In sensors of this type, the conductivity of the semiconductor layer changes upon interaction with the analyte. Metal oxides (both in the form of polycrystalline powders and various nanostructures), organic semiconductors, carbon nanostructures, silicon and various composites that are a combination of these materials are used as a semiconductor material. The selectivity of a single oxide sensor can be adjusted to specific analytes within certain limits by using the appropriate semiconductor material and sensitizers. This review presents the current state of knowledge and achievements in the field of semiconductor sensors for CWA detection. The article describes the principles of operation of semiconductor sensors, discusses individual solutions used for CWA detection present in the scientific literature and makes a critical comparison of them. The prospects for the development and practical application of this analytical technique in CWA field analysis are also discussed.
Collapse
|
5
|
Ron I, Sharabi H, Zaltsman A, Leibman A, Hotoveli M, Pevzner A, Kendler S. Non-Contact, Continuous Sampling of Porous Surfaces for the Detection of Particulate and Adsorbed Organic Contaminations by Low-Temperature Plasma Coupled to Ion Mobility Spectrometer. SENSORS (BASEL, SWITZERLAND) 2023; 23:2253. [PMID: 36850851 PMCID: PMC9961393 DOI: 10.3390/s23042253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Chemical analysis of hazardous surface contaminations, such as hazardous substances, explosives or illicit drugs, is an essential task in security, environmental and safety applications. This task is mostly based on the collection of particles with swabs, followed by thermal desorption into a vapor analyzer, usually a detector based on ion mobility spectrometry (IMS). While this methodology is well established for several civil applications, such as border control, it is still not efficient enough for various conditions, as in sampling rough and porous surfaces. Additionally, the process of thermal desorption is energetically inefficient, requires bulky hardware and introduces device contamination memory effects. Low-temperature plasma (LTP) has been demonstrated as an ionization and desorption source for sample preparation-free analysis, mostly at the inlet of a mass spectrometer analyzer, and in rare cases in conjunction with an ion mobility spectrometer. Herein, we demonstrate, for the first time, the operation of a simple, low cost, home-built LTP apparatus for desorbing non-volatile analytes from various porous surfaces into the inlet of a handheld IMS vapor analyzer. We show ion mobility spectra that originate from operating the LTP jet on porous surfaces such as asphalt and shoes, contaminated with model amine-containing organic compounds. The spectra are in good correlation with spectra measured for thermally desorbed species. We verify through LC-MS analysis of the collected vapors that the sampled species are not fragmented, and can thus be identified by commercial IMS detectors.
Collapse
Affiliation(s)
- Izhar Ron
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hagay Sharabi
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Amalia Zaltsman
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Amir Leibman
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Mordi Hotoveli
- Department of Environmental, Water and Agricultural Engineering, Faculty of Civil & Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Alexander Pevzner
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Shai Kendler
- Department of Environmental, Water and Agricultural Engineering, Faculty of Civil & Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Department of Environmental Physics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
6
|
Ahrens A, Allers M, Bock H, Hitzemann M, Ficks A, Zimmermann S. Detection of Chemical Warfare Agents with a Miniaturized High-Performance Drift Tube Ion Mobility Spectrometer Using High-Energetic Photons for Ionization. Anal Chem 2022; 94:15440-15447. [PMID: 36301910 PMCID: PMC9647701 DOI: 10.1021/acs.analchem.2c03422] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A growing demand for low-cost gas sensors capable of
detecting
the smallest amounts of highly toxic substances in air, including
chemical warfare agents (CWAs) and toxic industrial chemicals (TICs),
has emerged in recent years. Ion mobility spectrometers (IMS) are
particularly suitable for this application due to their high sensitivity
and fast response times. In view of the preferred mobile use of such
devices, miniaturized ion drift tubes are required as the core of
IMS-based lightweight, low-cost, hand-held gas detectors. Thus, we
evaluate the suitability of a miniaturized ion mobility spectrometer
featuring an ion drift tube length of just 40 mm and a high resolving
power of Rp = 60 for the detection of
various CWAs, such as nerve agents sarin (GB), tabun (GA), soman (GD),
and cyclosarin (GF), as well as the blister agent sulfur mustard (HD),
the blood agent hydrogen cyanide (AC) and the choking agent chlorine
(CL). We report on the limits of detection reaching minimum concentration
levels of, for instance, 29 pptv for sarin (GB) within
an averaging time of only 1 s. Furthermore, we investigate the effects
of precursors, simulants, and other common interfering substances
on false positive alarms.
Collapse
Affiliation(s)
- André Ahrens
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, 30167Hannover, Germany
| | - Maria Allers
- Bundeswehr Research Institute for Protective Technologies and CBRN Protection, Humboldtstraße 100, Munster29633, Germany
| | - Henrike Bock
- Bundeswehr Research Institute for Protective Technologies and CBRN Protection, Humboldtstraße 100, Munster29633, Germany
| | - Moritz Hitzemann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, 30167Hannover, Germany
| | - Arne Ficks
- Bundeswehr Research Institute for Protective Technologies and CBRN Protection, Humboldtstraße 100, Munster29633, Germany
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, 30167Hannover, Germany
| |
Collapse
|
7
|
Portable automated handheld sample collection-preparation instrument for airborne volatile substances. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Aliaño-González MJ, Ferreiro-González M, Espada-Bellido E, Palma M, Barbero GF. A Screening Method Based on Headspace-Ion Mobility Spectrometry to Identify Adulterated Honey. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1621. [PMID: 30987373 PMCID: PMC6480427 DOI: 10.3390/s19071621] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
Nowadays, adulteration of honey is a frequent fraud that is sometimes motivated by the high price of this product in comparison with other sweeteners. Food adulteration is considered a deception to consumers that may have an important impact on people's health. For this reason, it is important to develop fast, cheap, reliable and easy to use analytical methods for food control. In the present research, a novel method based on headspace-ion mobility spectrometry (HS-IMS) for the detection of adulterated honey by adding high fructose corn syrup (HFCS) has been developed. A Box-Behnken design combined with a response surface method have been used to optimize a procedure to detect adulterated honey. Intermediate precision and repeatability studies have been carried out and coefficients of variance of 4.90% and 4.27%, respectively, have been obtained. The developed method was then tested to detect adulterated honey. For that purpose, pure honey samples were adulterated with HFCS at different percentages (10-50%). Hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed a tendency of the honey samples to be classified according to the level of adulteration. Nevertheless, a perfect classification was not achieved. On the contrary, a full classification (100%) of all the honey samples was performed by linear discriminant analysis (LDA). This is the first time the technique of HS-IMS has been applied for the determination of adulterated honey with HFCS in an automatic way.
Collapse
Affiliation(s)
- María José Aliaño-González
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| |
Collapse
|
9
|
Sorribes-Soriano A, de la Guardia M, Esteve-Turrillas FA, Armenta S. Trace analysis by ion mobility spectrometry: From conventional to smart sample preconcentration methods. A review. Anal Chim Acta 2018; 1026:37-50. [PMID: 29852992 DOI: 10.1016/j.aca.2018.03.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid and high sensitive technique widely used in security and forensic areas. However, a lack of selectivity is usually observed in the analysis of complex samples due to the scarce resolution of the technique. The literature concerning the use of conventional and novel smart materials in the pretreatment and preconcentration of samples previous to IMS determinations has been critically reviewed. The most relevant strategies to enhance selectivity and sensitivity of IMS determinations have been widely discussed, based in the use of smart materials, as immunosorbents, aptamers, molecularly imprinted polymers (MIPs), ionic liquids (ILs) and nanomaterial. The observed trend is focused on the development of IMS analytical methods in combination of selective sample treatments in order to achieve quick, reliable, sensitive, and selective methods for the analysis of complex samples such as biological fluids, food, or environmental samples.
Collapse
Affiliation(s)
- A Sorribes-Soriano
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - M de la Guardia
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - F A Esteve-Turrillas
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - S Armenta
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain.
| |
Collapse
|
10
|
Witkiewicz Z, Neffe S, Sliwka E, Quagliano J. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents. Crit Rev Anal Chem 2018. [PMID: 29533075 DOI: 10.1080/10408347.2018.1439366] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.
Collapse
Affiliation(s)
- Zygfryd Witkiewicz
- a Faculty of Advanced Technologies and Chemistry , Military University of Technology , Warsaw , Poland
| | - Slawomir Neffe
- a Faculty of Advanced Technologies and Chemistry , Military University of Technology , Warsaw , Poland
| | - Ewa Sliwka
- b Division of Chemistry and Technology of Fuel , Wroclaw University of Technology , Wroclaw , Poland
| | - Javier Quagliano
- c Applied Chemistry Department , Argentine Institute for Scientific and Technical Research for the Defense (CITEDEF) , Buenos Aires , Argentina
| |
Collapse
|
11
|
Hong Y, Liu S, Huang C, Xia L, Shen C, Jiang H, Chu Y. Simultaneous Improvement of Resolving Power and Signal-to-Noise Ratio Using a Modified Hadamard Transform-Inverse Ion Mobility Spectrometry Technique. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2500-2507. [PMID: 28819725 DOI: 10.1007/s13361-017-1773-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
In order to improve the resolving power (RP) and signal-to-noise ratio (SNR) of ion mobility spectrometry (IMS) simultaneously, a modified Hadamard transform-inverse ion mobility spectrometry (MHT-IIMS) technique was developed. In this novel technique, a series of isolating codes were appended to each element of the pseudo random binary sequence (PRBS), and then the modified modulation sequence was formed and used to control the ion gate of the inverse IMS (IIMS). Experimental results demonstrate that the MHT-IIMS technique can significantly enhance the resolving power and SNR simultaneously by measuring the spectra of reaction ions. Furthermore, the gas sample CCl4 and CHCl3 were measured for evaluating the capability of detecting those samples which have single and multiple product ions. The results show that this novel technique is able to simultaneously improve the resolving power and SNR notablely for the real sample detection without any significant instrumental changes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yan Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Sheng Liu
- College of Computer Science and Technology, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| | - Lei Xia
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Haihe Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
12
|
Ion mobility spectrometry: Current status and application for chemical warfare agents detection. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Maziejuk M, Puton J, Szyposzyńska M, Witkiewicz Z. Fragmentation of molecular ions in differential mobility spectrometry as a method for identification of chemical warfare agents. Talanta 2015; 144:1201-6. [DOI: 10.1016/j.talanta.2015.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/04/2015] [Accepted: 07/12/2015] [Indexed: 10/23/2022]
|