1
|
Aparna TK, D ST, Dar MA, Gul R, Sivasubramanian R. Polydopamine functionalized FeTiO 3 nanohexagons for selective and simultaneous electrochemical determination of dopamine and uric acid. RSC Adv 2024; 14:26694-26702. [PMID: 39184000 PMCID: PMC11340443 DOI: 10.1039/d4ra04148h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Herein we report the simultaneous detection of dopamine (DA) and uric acid (UA) using polydopamine (PDA) functionalized FeTiO3 nanohexagons. The nanohexagons were hydrothermally synthesized and subsequently functionalized with PDA in a Tris-buffer solution. The PDA functionalized nanostructure was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR), respectively. The SEM and TEM investigations revealed the presence of FeTiO3 nanohexagons along with a peripheral coating of PDA over the nanostructures. The XRD pattern confirmed the formation of the ilmenite structure, while the chemical structure was investigated through XPS and FTIR respectively. Using cyclic voltammetry (CV) the efficacy of FeTiO3-PDA electrode was evaluated toward DA oxidation. The enhanced activity of the functionalized electrode in DA oxidation, as compared to the untreated FeTiO3, may be attributed to the significant presence of hydroxyl, amine, and imine functional groups over the polymer layer. Differential pulse voltammetry (DPV) was utilized for the detection of DA and UA. With a linear range of 50 μM to 250 μM, the detection limits of 0.30 μM and 4.61 μM were determined for DA and UA, respectively. The peak separation of 263 mV between DA and UA demonstrates the sensor's remarkable selectivity. In addition, the study displayed the ability to detect both DA and UA simultaneously, and the validity of the sensor was evaluated in serum samples, respectively.
Collapse
Affiliation(s)
- T K Aparna
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras Chennai Tamilnadu 600036 India
| | - Swathi Tharani D
- Electrochemical Sensors and Energy Materials Lab, PSG Institute of Advanced Studies Coimbatore Tamil Nadu 641004 India
| | - Mushtaq Ahmad Dar
- Center of Excellence for Research in Engineering Materials, King Saud University Riyadh 11421 Saudi Arabia
| | - Rukhsana Gul
- Obesity Research Center, King Saud University Riyadh 11461 Saudi Arabia
| | - R Sivasubramanian
- Department of Chemistry, School of Physical Sciences, Amrita Vishwa Vidyapeetham Amaravati Andhra Pradesh 522503 India
| |
Collapse
|
2
|
Tasleem M, Singh V, Tiwari A, Ganesan V, Sankar M. Electrocatalysis Using Cobalt Porphyrin Covalently Linked with Multi-Walled Carbon Nanotubes: Hydrazine Sensing and Hydrazine-Assisted Green Hydrogen Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401273. [PMID: 38958069 DOI: 10.1002/smll.202401273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).
Collapse
Affiliation(s)
- Mohammad Tasleem
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Varsha Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Ananya Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Muniappan Sankar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
3
|
Liu XL, Wang HC, Yang T, Yue XZ, Yi SS. Functions of metal-phenolic networks and polyphenol derivatives in photo(electro)catalysis. Chem Commun (Camb) 2023; 59:13690-13702. [PMID: 37902025 DOI: 10.1039/d3cc04156e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Phenolic compounds are ubiquitous in nature because of their unique physical and chemical properties and wide applications, which have received extensive research attention. Phenolic compounds represented by tannic acid (TA) play an important role at the nanoscale. TA with a polyphenol hydroxyl structure can chemically react with organic or inorganic materials, among which metal-phenolic networks (MPNs) formed by coordination with metal ions and polyphenol derivatives formed by interactions with organic matter, exhibit specific properties and functions, and play key roles in photo(electro)catalysis. In this paper, we first introduce the fundamental properties of TA, then summarize the factors influencing the properties of MPNs and structural transformation of polyphenol-derived materials. Subsequently, the functions of MPNs and polyphenol derivatives in photo(electro)catalysis reactions are summarized, encompassing improving interfacial charge carrier separation, accelerating surface reaction kinetics, and enhancing light absorption. Finally, this article provides a comprehensive overview of the challenges and outlook associated with MPNs. Additionally, it presents novel insights into their stability, mechanistic analysis, synthesis, and applications in photo(electro)catalysis.
Collapse
Affiliation(s)
- Xiao-Long Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Hai-Chao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Tao Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xin-Zheng Yue
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Sha-Sha Yi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Pineda EG, Azpeitia L, Presa MR, Bolzán A, Gervasi C. Benchmarking electrodes modified with bi-doped polypyrrole for sensing applications. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Xing Y, Tang X, Ling C, Zhang Y, He Z, Ran G, Yu H, Huang K, Zou Z, Xiong X. Three-dimensional Setaria viridis-like NiCoSe2 nanoneedles array: As an efficient electrochemical hydrazine sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Singh M, Bhardiya SR, Asati A, Sheshma H, Rai A, Rai VK. Design of a Sensitive Electrochemical Sensor Based on Ferrocene‐reduced Graphene Oxide/Mn‐spinel for Hydrazine Detection. ELECTROANAL 2020. [DOI: 10.1002/elan.202060345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur, CG 495009 INDIA
| | - Smita R. Bhardiya
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur, CG 495009 INDIA
| | - Ambika Asati
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur, CG 495009 INDIA
| | - Harendra Sheshma
- School of Physical Sciences Jawaharlal Nehru University New Delhi 110067 INDIA
| | - Ankita Rai
- School of Physical Sciences Jawaharlal Nehru University New Delhi 110067 INDIA
| | - Vijai K. Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur, CG 495009 INDIA
| |
Collapse
|
7
|
Highly sensitive detection of hydrazine by a disposable, Poly(Tannic Acid)-Coated carbon electrode. Biosens Bioelectron 2020; 150:111927. [DOI: 10.1016/j.bios.2019.111927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/14/2023]
|
8
|
Sun F, Li Q, Xue H, Pang H. Pristine Transition‐Metal‐Based Metal‐Organic Frameworks for Electrocatalysis. ChemElectroChem 2019. [DOI: 10.1002/celc.201801520] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fancheng Sun
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| |
Collapse
|
9
|
Nguyen D, Bui Q. Three-dimensional mesoporous hierarchical carbon nanotubes/nickel foam-supported gold nanoparticles as a free-standing sensor for sensitive hydrazine detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Coskun H, Aljabour A, De Luna P, Farka D, Greunz T, Stifter D, Kus M, Zheng X, Liu M, Hassel AW, Schöfberger W, Sargent EH, Sariciftci NS, Stadler P. Biofunctionalized conductive polymers enable efficient CO 2 electroreduction. SCIENCE ADVANCES 2017; 3:e1700686. [PMID: 28798958 PMCID: PMC5544399 DOI: 10.1126/sciadv.1700686] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/30/2017] [Indexed: 05/19/2023]
Abstract
Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine-a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes-could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film-based processing. We achieve catalytic performance with geometric current densities of 18 mA cm-2 at 0.21 V overpotential (-0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm-1). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications.
Collapse
Affiliation(s)
- Halime Coskun
- Linz Institute for Organic Solar Cells, Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Abdalaziz Aljabour
- Linz Institute for Organic Solar Cells, Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Chemical Engineering, Selçuk University, 42075 Konya, Turkey
| | - Phil De Luna
- Department of Materials Science and Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada
| | - Dominik Farka
- Linz Institute for Organic Solar Cells, Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Theresia Greunz
- Center for Surface and Nanoanalytics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - David Stifter
- Center for Surface and Nanoanalytics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Mahmut Kus
- Department of Chemical Engineering, Selçuk University, 42075 Konya, Turkey
| | - Xueli Zheng
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Min Liu
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Achim W. Hassel
- Christian Doppler Laboratory for Combinatorial Oxide Chemistry (COMBOX) at Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Edward H. Sargent
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells, Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Philipp Stadler
- Linz Institute for Organic Solar Cells, Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Corresponding author.
| |
Collapse
|
11
|
D'Souza OJ, Mascarenhas RJ, Satpati AK, Mane V, Mekhalif Z. Application of a Nanosensor Based on MWCNT-Sodium Dodecyl Sulphate Modified Electrode for the Analysis of a Novel Drug, Alpha-Hydrazinonitroalkene in Human Blood Serum. ELECTROANAL 2017. [DOI: 10.1002/elan.201700114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ozma J D'Souza
- Research and Development Centre; Bharathiar University; Coimbatore - 641 014, Tamil Nadu India
| | - Ronald J Mascarenhas
- Research and Development Centre; Bharathiar University; Coimbatore - 641 014, Tamil Nadu India
- Electrochemistry Research Group, Department of Chemistry; St. Joseph's College; Lalbagh Road Bangalore - 560 027 Karnataka India
| | - Ashis K Satpati
- Analytical Chemistry Division, Bhabha Atomic Research Centre; Anushakthi Nagar, Trombay; Mumbai - 400 094, Maharashtra India
| | - Vaijinath Mane
- Department of Chemistry; Indian Institute of Technology; Bombay, Mumbai - 400 076 India
| | - Zineb Mekhalif
- Laboratoire de Chimie et d'Electrochimie des Surface; University of Namur; 61 Rue de Bruxelles B-5000 Namur Belgium
| |
Collapse
|
12
|
Chen S, Hou P, Wang J, Liu L, Zhang Q. A highly selective fluorescent probe based on coumarin for the imaging of N 2H 4 in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:170-174. [PMID: 27643466 DOI: 10.1016/j.saa.2016.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
A turn-on fluorescence probe for highly sensitive and selective detection of N2H4 was developed based on hydrazine-triggered a substitution- cyclization-elimination cascade. Upon the treatment with N2H4, probe 1, 4-methyl-coumarin-7-yl bromobutanoate, displayed a remarkable fluorescence enhancement (25-fold) with a maximum at 450nm. This probe can quantitatively detect N2H4 with a extremely low detection limit as 7×10-8M. Moreover, cell imaging experiments have indicated that probe 1 has potential ability to detect and image N2H4 in biological systems.
Collapse
Affiliation(s)
- Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province, PR China, 161006.
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province, PR China, 161006
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province, PR China, 161006
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province, PR China, 161006
| | - Qi Zhang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province, PR China, 161006
| |
Collapse
|