1
|
Huang X, Yao C, Huang S, Zheng S, Liu Z, Liu J, Wang J, Chen HJ, Xie X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens 2024; 9:1065-1088. [PMID: 38427378 DOI: 10.1021/acssensors.3c01947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Managing diabetes is a chronic challenge today, requiring monitoring and timely insulin injections to maintain stable blood glucose levels. Traditional clinical testing relies on fingertip or venous blood collection, which has facilitated the emergence of continuous glucose monitoring (CGM) technology to address data limitations. Continuous glucose monitoring technology is recognized for tracking long-term blood glucose fluctuations, and its development, particularly in wearable devices, has given rise to compact and portable continuous glucose monitoring devices, which facilitates the measurement of blood glucose and adjustment of medication. This review introduces the development of wearable CGM-based technologies, including noninvasive methods using body fluids and invasive methods using implantable electrodes. The advantages and disadvantages of these approaches are discussed as well as the use of microneedle arrays in minimally invasive CGM. Microneedle arrays allow for painless transdermal puncture and are expected to facilitate the development of wearable CGM devices. Finally, we discuss the challenges and opportunities and look forward to the biomedical applications and future directions of wearable CGM-based technologies in biological research.
Collapse
Affiliation(s)
- Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Gaikwad SS, Zanje AL, Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. Int J Pharm 2024; 652:123856. [PMID: 38281692 DOI: 10.1016/j.ijpharm.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Transdermal drug administration has grown in popularity in the pharmaceutical research community due to its potential to improve drug bioavailability, compliance among patients, and therapeutic effectiveness. To overcome the substantial barrier posed by the stratum corneum (SC) and promote drug absorption within the skin, various physical penetration augmentation approaches have been devised. This review article delves into popular physical penetration augmentation techniques, which include sonophoresis, iontophoresis, magnetophoresis, thermophoresis, needle-free injection, and microneedles (MNs) Sonophoresis is a technique that uses low-frequency ultrasonic waves to break the skin's barrier characteristics, therefore improving drug transport and distribution. In contrast, iontophoresis uses an applied electric current to push charged molecules of drugs inside the skin, effectively enhancing medication absorption. Magnetophoresis uses magnetic fields to drive drug carriers into the dermis, a technology that has shown promise in aiding targeted medication delivery. Thermophoresis is the regulated heating of the skin in order to improve drug absorption, particularly with thermally sensitive drug carriers. Needle-free injection technologies, such as jet injectors (JIs) and microprojection arrays, offer another option by producing temporary small pore sizes in the skin, facilitating painless and effective drug delivery. MNs are a painless, minimally invasive method, easy to self-administration, as well as high drug bioavailability. This study focuses on the underlying processes, current breakthroughs, and limitations connected with all of these approaches, with an emphasis on their applicability in diverse therapeutic areas. Finally, a thorough knowledge of these physical enhancement approaches and their incorporation into pharmaceutical research has the potential to revolutionize drug delivery, providing more efficient and secure treatment choices for a wide range of health-related diseases.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Abhijit L Zanje
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Jeevan D Somwanshi
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
3
|
Guo P, Huang C, Yang Q, Zhong G, Zhang J, Qiu M, Zeng R, Gou K, Zhang C, Qu Y. Advances in Formulations of Microneedle System for Rheumatoid Arthritis Treatment. Int J Nanomedicine 2023; 18:7759-7784. [PMID: 38144510 PMCID: PMC10743780 DOI: 10.2147/ijn.s435251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation, eventually leading to severe disability and premature death. At present, the treatment of RA is mainly to reduce inflammation, swelling, and pain. Commonly used drugs are non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and disease-modifying anti-rheumatic drugs (DMARDs). These drugs lack specificity and require long-term, high-dose administration, which can cause serious adverse effects. In addition, the oral, intravenous, and intra-articular injections will reduce patient compliance, resulting in high cost and low bioavailability. Due to these limitations, microneedles (MNs) have emerged as a new strategy to efficiently localize the drugs in inflamed joints for the treatment of RA. MNs can overcome the cuticle barrier of the skin without stimulating nerves and blood vessels. Which can increase patient compliance, improve bioavailability, and avoid systemic circulation. This review summarizes and evaluates the application of MNs in RA, especially dissolving MNs (DMNs). We encourage the use of MNs to treat RA, by describing the general properties of MNs, materials, preparation technology, drug release mechanism, and advantages. Furthermore, we discussed the biological safety, development prospects, and future challenges of MNs, hoping to provide a new strategy for the treatment of RA.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Chi Huang
- Department of Pharmacy, Jiang’an Hospital of Traditional Chinese Medicine, Yibin, 644200, People’s Republic of China
| | - Qin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Rui Zeng
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Kaijun Gou
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| |
Collapse
|
4
|
Min HS, Kim Y, Nam J, Ahn H, Kim M, Kang G, Jang M, Yang H, Jung H. Shape of dissolving microneedles determines skin penetration ability and efficacy of drug delivery. BIOMATERIALS ADVANCES 2023; 145:213248. [PMID: 36610239 DOI: 10.1016/j.bioadv.2022.213248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Dissolving microneedles (DMNs) are used for minimally invasive transdermal drug delivery. Dissolution of drugs is achieved in the body after skin penetration by DMNs. Unlike injections, the insertion depth of the DMN is an important issue because the amount of dissolved DMN in the skin determines the amount of drug delivered. Therefore, the inaccurate drug delivery due to the incomplete insertion is one of the limitations of the DMN. Thus, many insertion and penetration tests have been essentially conducted in DMN studies, yet only incomplete insertion is known and the exact standard for how much it is not inserted is still unknown. Moreover, there are various shapes have been introduced in the microneedle field, there have been only few studies that have compared and evaluated the insertion depth of the shapes. Here, we present an intensive approach for DMN insertion based on DMN shape among various insertion deciding factors. We numerically analyzed the volumetric distribution of three types of DMN shapes: conical-shaped DMN, funnel-shaped DMN, and candlelit-shaped DMN, and introduced a new insertion evaluation criterion while covering previous insertion evaluations. Using optical coherence tomography, the images of DMNs embedded in the skin were analyzed in rea l-time, and the amount of drug delivered was analyzed at sectioned depth with a cryotome. The in vitro data confirmed that the insertion depth differed based on shape, and the resulting drug delivery depended on the volume assigned to the insertion depth. Insulin-loaded DMNs were applied to C57BL/6 mice, and the results of pharmacokinetic and pharmacodynamic analyses supported the results of the in vitro analysis. Our approach, which considers the correlation between DMN shape and insertion depth, will contribute to establishing criteria for various DMN design and maximizing drug delivery.
Collapse
Affiliation(s)
- Hye Su Min
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Youseong Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jeehye Nam
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Hyeri Ahn
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Minkyung Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Geonwoo Kang
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, South Korea
| | - Mingyu Jang
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, South Korea
| | - Huisuk Yang
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, South Korea
| | - Hyungil Jung
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, South Korea.
| |
Collapse
|
5
|
Duan X, Ma J, Ning M, Gao Y. Dissolving Microneedles Loaded with Gestodene: Fabrication and Characterization In Vitro and In Vivo. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e131819. [PMID: 38116561 PMCID: PMC10728855 DOI: 10.5812/ijpr-131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/25/2023] [Accepted: 04/04/2023] [Indexed: 12/21/2023]
Abstract
Background Gestodene (GEST) is widely used in female contraception. It is currently being used as an oral contraceptive. However, unfortunately, oral contraceptives are often associated with several bothersome side effects and poor compliance. Therefore, a sustained delivery system for GEST to overcome these shortcomings is highly desirable. Objectives The present study successfully developed a kind of novel dissolving microneedles (DMNs) with a potential for sustained release and a minimally invasive intradermal treatment of GEST. Methods The dissolving microneedles containing GEST were fabricated using polyvinylpyrrolidone as the base material. The characteristics in vitro and pharmacokinetics in vivo of GEST-loaded DMNs were investigated. Results The results showed that the microneedle could pierce the porcine skin and release the drug at an average dose of 20µg/cm2 daily for seven days. The pharmacokinetic experiment of the microneedles indicated that the plasma level of GEST in rats increased with increasing drug dosage, and the plasma drug concentration-time curves were much flatter compared with subcutaneous injection and oral administration. In addition, no cutaneous irritation was observed. Conclusions GEST-loaded DMNs may be a promising intradermal sustained delivery system for contraceptive use.
Collapse
Affiliation(s)
- Xueyan Duan
- Center of Drug and Medical Polymer Materials, National Research Institute for Family Planning, Beijing, China
| | - Jianan Ma
- Center of Drug and Medical Polymer Materials, National Research Institute for Family Planning, Beijing, China
| | - Meiying Ning
- Center of Drug and Medical Polymer Materials, National Research Institute for Family Planning, Beijing, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Ali M, Namjoshi S, Benson HAE, Mohammed Y, Kumeria T. Dissolvable polymer microneedles for drug delivery and diagnostics. J Control Release 2022; 347:561-589. [PMID: 35525331 DOI: 10.1016/j.jconrel.2022.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Dissolvable transdermal microneedles (μND) are promising micro-devices used to transport a wide selection of active compounds into the skin. To provide an effective therapeutic outcome, μNDs must pierce the human stratum corneum (~10 to 20 μm), without rupturing or bending during penetration, then release their cargo at the predetermined area and time. The ability of dissolvable μND arrays/patches to sufficiently pierce the skin is a crucial requirement, which depends on the material composition, μND geometry and fabrication techniques. This comprehensive review not only provides contemporary knowledge on the μND design approaches, but also the materials science facilitating these delivery systems and the opportunities these advanced materials can provide to enhance clinical outcomes.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia; Vaxxas Pty Ltd, Brisbane, Woolloongabba, QLD 4102, Australia
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Basil Hetzel institute for Translational Health Research, Adelaide, SA 5001, Australia.
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney. NSW 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
7
|
Li J, Ma Y, Huang D, Wang Z, Zhang Z, Ren Y, Hong M, Chen Y, Li T, Shi X, Cao L, Zhang J, Jiao B, Liu J, Sun H, Li Z. High-Performance Flexible Microneedle Array as a Low-Impedance Surface Biopotential Dry Electrode for Wearable Electrophysiological Recording and Polysomnography. NANO-MICRO LETTERS 2022; 14:132. [PMID: 35699782 PMCID: PMC9198145 DOI: 10.1007/s40820-022-00870-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/20/2022] [Indexed: 06/01/2023]
Abstract
Polyimide-based flexible microneedle array (PI-MNA) electrodes realize high electrical/mechanical performance and are compatible with wearable wireless recording systems. The normalized electrode-skin interface impedance (EII) of the PI-MNA electrodes reaches 0.98 kΩ cm2 at 1 kHz and 1.50 kΩ cm2 at 10 Hz, approximately 1/250 of clinical standard electrodes. This is the first report on the clinical study of microneedle electrodes. The PI-MNA electrodes are applied to clinical long-term continuous monitoring for polysomnography. Microneedle array (MNA) electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applications. Existing schemes are limited by flexibility, biosafety, and manufacturing costs, which create large barriers for wider applications. Here, we present a novel flexible MNA electrode that can simultaneously achieve flexibility of the substrate to fit a curved body surface, robustness of microneedles to penetrate the skin without fracture, and a simplified process to allow mass production. The compatibility with wearable wireless systems and the short preparation time of the electrodes significantly improves the comfort and convenience of electrophysiological recording. The normalized electrode-skin contact impedance reaches 0.98 kΩ cm2 at 1 kHz and 1.50 kΩ cm2 at 10 Hz, a record low value compared to previous reports and approximately 1/250 of the standard electrodes. The morphology, biosafety, and electrical/mechanical properties are fully characterized, and wearable recordings with a high signal-to-noise ratio and low motion artifacts are realized. The first reported clinical study of microneedle electrodes for surface electrophysiological monitoring was conducted in tens of healthy and sleep-disordered subjects with 44 nights of recording (over 8 h per night), providing substantial evidence that the electrodes can be leveraged to substitute for clinical standard electrodes.
Collapse
Affiliation(s)
- Junshi Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
| | - Yundong Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, People's Republic of China
| | - Dong Huang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
- School of Electronics, Peking University, Beijing, 100871, People's Republic of China
- Hypnometry Microsystem, Beijing, 100871, People's Republic of China
| | - Zhongyan Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
| | - Zhitong Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
| | - Yingjie Ren
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
| | - Mengyue Hong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, People's Republic of China
| | - Yufeng Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
| | - Tingyu Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
| | - Xiaoyi Shi
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
| | - Lu Cao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
- College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Jiayan Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
| | - Bingli Jiao
- School of Electronics, Peking University, Beijing, 100871, People's Republic of China
| | - Junhua Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, People's Republic of China.
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
8
|
Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. J Control Release 2021; 338:341-357. [PMID: 34428480 DOI: 10.1016/j.jconrel.2021.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Microneedle arrays have recently received much attention as cancer detection and treatment platforms, because invasive injections and detection of the biopsy are not needed, and drug metabolism by the liver, as well as adverse effects of systemic drug administration, are diminished. Microneedles have been used for diagnosis, vaccination, and in targeted drug delivery of breast cancer. In this review, we summarize the recent progress in diagnosis and targeted drug delivery for breast cancer treatment, using microneedle arrays to deliver active molecules through the skin. The results not only suggest that health and well-being of patients are improved, but also that microneedle arrays can deliver anticancer compounds in a relatively noninvasive manner, based on body weight, breast tumor size, and circulation time of the drug. Moreover, microneedles could allow simultaneous loading of multiple drugs and enable controlled release, thus effectively optimizing or preventing drug-drug interactions. This review is designed to encourage the use of microneedles for diagnosis and treatment of breast cancer, by describing general properties of microneedles, materials used for construction, mechanism of action, and principal benefits. Ongoing challenges and future perspectives for the application of microneedle array systems in breast cancer detection and treatment are highlighted.
Collapse
|
9
|
Affiliation(s)
- Aung Than
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Ping Zan
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| |
Collapse
|
10
|
Xie L, Zeng H, Sun J, Qian W. Engineering Microneedles for Therapy and Diagnosis: A Survey. MICROMACHINES 2020; 11:E271. [PMID: 32150866 PMCID: PMC7143426 DOI: 10.3390/mi11030271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Microneedle (MN) technology is a rising star in the point-of-care (POC) field, which has gained increasing attention from scientists and clinics. MN-based POC devices show great potential for detecting various analytes of clinical interests and transdermal drug delivery in a minimally invasive manner owing to MNs' micro-size sharp tips and ease of use. This review aims to go through the recent achievements in MN-based devices by investigating the selection of materials, fabrication techniques, classification, and application, respectively. We further highlight critical aspects of MN platforms for transdermal biofluids extraction, diagnosis, and drug delivery assisted disease therapy. Moreover, multifunctional MNs for stimulus-responsive drug delivery systems were discussed, which show incredible potential for accurate and efficient disease treatment in dynamic environments for a long period of time. In addition, we also discuss the remaining challenges and emerging trend of MN-based POC devices from the bench to the bedside.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Hedele Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Jianjun Sun
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas, EI Paso, TX 79968, USA;
| |
Collapse
|
11
|
Ali R, Mehta P, Arshad MS, Kucuk I, Chang MW, Ahmad Z. Transdermal Microneedles-A Materials Perspective. AAPS PharmSciTech 2019; 21:12. [PMID: 31807980 DOI: 10.1208/s12249-019-1560-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Transdermal drug delivery is an emerging field in the pharmaceutical remit compared with conventional methods (oral and parenteral). Microneedle (MN)-based devices have gained significant interest as a strategy to overcome the skin's formidable barrier: the stratum corneum. This approach provides a less invasive, more efficient, patient friendly method of drug delivery with the ability to incorporate various therapeutic agents including macromolecules (proteins and peptides), anti-cancer agents and other hydrophilic and hydrophobic compounds. This short review attempts to assess the various materials involved in the fabrication of MNs as well as incorporation of other excipients to improve drug delivery for novel medical devices. The focus will be on polymers, metals and other inorganic materials utilised for MN drug delivery, as well as their application, limitations and future work to be carried out.
Collapse
|
12
|
Chen Z, Ye R, Yang J, Lin Y, Lee W, Li J, Ren L, Liu B, Jiang L. Rapidly Fabricated Microneedle Arrays Using Magnetorheological Drawing Lithography for Transdermal Drug Delivery. ACS Biomater Sci Eng 2019; 5:5506-5513. [PMID: 33464070 DOI: 10.1021/acsbiomaterials.9b00919] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microneedle arrays (MAs) are among the most promising transdermal drug delivery systems in the last decades due to its minimally invasive nature, convenient operation, and first-pass-metabolism avoidance. However, most MA fabrication methods are difficult to operate, need multiple steps, or require expensive equipment. A novel magnetorheological drawing lithography approach was proposed to rapidly fabricate a flexible microneedle array (FMA) for transdermal drug delivery. A 3D structural liquid MA was drawn in one step from the droplets of curable magnetorheological fluid and maintained its shape under an external magnetic field. The liquid MA was subsequently solidified and sputter-coated with the Ti/Au film to fabricate FMA. FMA morphology, mechanical properties, and transdermal drug delivery performance in vitro were experimentally investigated. FMA consisted of a 5 × 5 cone-shaped microneedle array on a PET flexible substrate. FMA exhibited good strength and excellent penetration performance. It could easily penetrate into skin without breakage, creating microchannels for the promotion of skin permeability. Drugs could be well permeated and diffused in the skin along the microchannels created by FMA. Finally, a dissolvable microneedle array (DMA) was also fabricated by a micromolding technique using FMA as a master template. The DMA exhibited good dissolvable and permeable performance in the agarose block.
Collapse
Affiliation(s)
- Zhipeng Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Rui Ye
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Yinyan Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Weihsian Lee
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Jingwei Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Lei Ren
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| |
Collapse
|
13
|
Zhang Y, Wang D, Gao M, Xu B, Zhu J, Yu W, Liu D, Jiang G. Separable Microneedles for Near-Infrared Light-Triggered Transdermal Delivery of Metformin in Diabetic Rats. ACS Biomater Sci Eng 2018; 4:2879-2888. [DOI: 10.1021/acsbiomaterials.8b00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Zhang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Danfeng Wang
- Department of Gynecology and Obstetrics, Tonglu Maternal and Child Health Care Hospital, Tonglu, Zhejiang 311500, China
| | - Mengyue Gao
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bin Xu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jiangying Zhu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Weijiang Yu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Depeng Liu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
14
|
Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater 2018; 65:283-291. [PMID: 29107057 DOI: 10.1016/j.actbio.2017.10.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022]
Abstract
Microneedles are micron-sized needles that are widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. In this study, we present a novel magnetorheological drawing lithography (MRDL) method to efficiently fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. With the assistance of an external magnetic field, the 3D structure of a microneedle can be directly drawn from a droplet of curable magnetorheological fluid. The formation process of a microneedle consists of two key stages, elasto-capillary self-thinning and magneto-capillary self-shrinking, which greatly affect the microneedle height and tip radius. Penetration and fracture tests demonstrated that the microneedle had sufficient strength and toughness for skin penetration. Microneedle arrays and a bio-inspired microneedle were also fabricated, which further demonstrated the versatility and flexibility of the MRDL method. STATEMENT OF SIGNIFICANCE Microneedles have been widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. Furthermore, most researchers have focused on the biomedical applications of microneedles but have given little attention to the optimization of the fabrication process. This research presents a novel magnetorheological drawing lithography (MRDL) method to fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. In this proposed technique, a droplet of curable magnetorheological fluid (CMRF) is drawn directly from almost any substrate to produce a 3D microneedle under an external magnetic field. This method not only inherits the advantages of thermal drawing approach without the need for a mask and light irradiation but also eliminates the requirement for drawing temperature adjustment. The MRDL method is extremely simple and can even produce the complex and multiscale structure of bio-inspired microneedle.
Collapse
|
15
|
Ita K. Dissolving microneedles for transdermal drug delivery: Advances and challenges. Biomed Pharmacother 2017; 93:1116-1127. [DOI: 10.1016/j.biopha.2017.07.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
|
16
|
Lv X, Geng Z, Fan Z, Wang S, Pei W, Chen H. An integrated method for cell isolation and migration on a chip. Sci Rep 2017; 7:8963. [PMID: 28827722 PMCID: PMC5566426 DOI: 10.1038/s41598-017-08661-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Tumour cell migration has an important impact on tumour metastasis. Magnetic manipulation is an ascendant method for guiding and patterning cells. Here, a unique miniaturized microfluidic chip integrating cell isolation and migration assay was designed to isolate and investigate cell migration. The chip was fabricated and composed of a magnet adapter, a polytetrafluoroethylene(PDMS) microfluidic chip and six magnetic rings. This device was used to isolate MCF-7 cells from MDA-MB-231-RFP cells and evaluate the effects of TGF-β on MCF-7 cells. First, the two cell types were mixed and incubated with magnetic beads modified with an anti-EpCAM antibody. Then, they were slowly introduced into the chip. MCF-7 cells bond to the magnetic beads in a ring-shaped pattern, while MDA-MB-231-RFP cells were washed away by PBS. Cell viability was examined during culturing in the micro-channel. The effects of TGF-β on MCF-7 cells were evaluated by migration distance and protein expression. The integrated method presented here is novel, low-cost and easy for performing cell isolation and migration assay. The method could be beneficial for developing microfluidic device applications for cancer metastasis research and could provide a new method for biological experimentation.
Collapse
Affiliation(s)
- Xiaoqing Lv
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoxin Geng
- School of Information Engineering, Minzu University of China, Beijing, China.
| | - Zhiyuan Fan
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shicai Wang
- State Key Laboratory of crystal materials, Shandong University, Jinan, China
| | - WeiHua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Hongda Chen
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|