1
|
Kumar A, Goudar VS, Nahak BK, Tsai PH, Lin HW, Tseng FG. [Ru(dpp) 3 ]Cl 2 -Embedded Oxygen Nano Polymeric Sensors: A Promising Tool for Monitoring Intracellular and Intratumoral Oxygen Gradients with High Quantum Yield and Long Lifetime. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307955. [PMID: 38148312 DOI: 10.1002/smll.202307955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/28/2023] [Indexed: 12/28/2023]
Abstract
Unraveling the intricacies between oxygen dynamics and cellular processes in the tumor microenvironment (TME) hinges upon precise monitoring of intracellular and intratumoral oxygen levels, which holds paramount significance. The majority of these reported oxygen nanoprobes suffer compromised lifetime and quantum yield when exposed to the robust ROS activities prevalent in TME, limiting their prolonged in vitro usability. Herein, the ruthenium-embedded oxygen nano polymeric sensor (Ru-ONPS) is proposed for precise oxygen gradient monitoring within the cellular environment and TME. Ru-ONPS (≈64±7 nm) incorporates [Ru(dpp)3 ]Cl2 dye into F-127 and crosslinks it with urea and paraformaldehyde, ensuring a prolonged lifetime (5.4 µs), high quantum yield (66.65 ± 2.43% in N2 and 49.80 ± 3.14% in O2 ), superior photostability (>30 min), and excellent stability in diverse environmental conditions. Based on the Stern-Volmer plot, the Ru-ONPS shows complete linearity for a wide dynamic range (0-23 mg L-1 ), with a detection limit of 10 µg mL-1 . Confocal imaging reveals Ru-ONPS cellular uptake and intratumoral distribution. After 72 h, HCT-8 cells show 5.20±1.03% oxygen levels, while NIH3T3 cells have 7.07±1.90%. Co-culture spheroids display declining oxygen levels of 17.90±0.88%, 10.90±0.88%, and 5.10±1.18%, at 48, 120, and 216 h, respectively. Ru-ONPS advances cellular oxygen measurement and facilitates hypoxia-dependent metastatic research and therapeutic target identification.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Venkanagouda S Goudar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Bishal Kumar Nahak
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Ping-Hsun Tsai
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Hao-Wu Lin
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| |
Collapse
|
2
|
Pawar D, Lo Presti D, Silvestri S, Schena E, Massaroni C. Current and future technologies for monitoring cultured meat: A review. Food Res Int 2023; 173:113464. [PMID: 37803787 DOI: 10.1016/j.foodres.2023.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
The high population growth rate, massive animal food consumption, fast economic progress, and limited food resources could lead to a food crisis in the future. There is a huge requirement for dietary proteins including cultured meat is being progressed to fulfill the need for meat-derived proteins in the diet. However, production of cultured meat requires monitoring numerous bioprocess parameters. This review presents a comprehensive overview of various widely adopted techniques (optical, spectroscopic, electrochemical, capacitive, FETs, resistive, microscopy, and ultrasound) for monitoring physical, chemical, and biological parameters that can improve the bioprocess control in cultured meat. The methods, operating principle, merits/demerits, and the main open challenges are reviewed with the aim to support the readers in advancing knowledge on novel sensing systems for cultured meat applications.
Collapse
Affiliation(s)
- Dnyandeo Pawar
- Microwave Materials Group, Centre for Materials for Electronics Technology (C-MET), Athani P.O, Thrissur, Kerala 680581, India.
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Sergio Silvestri
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
3
|
Mansouri M, Imes WD, Roberts OS, Leipzig ND. Fabrication of oxygen-carrying microparticles functionalized with liver ECM-proteins to improve phenotypic three-dimensional in vitro liver assembly, function, and responses. Biotechnol Bioeng 2023; 120:3025-3038. [PMID: 37269469 DOI: 10.1002/bit.28456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 06/05/2023]
Abstract
Oxygen and extracellular matrix (ECM)-derived biopolymers play vital roles in regulating many cellular functions in both the healthy and diseased liver. This study highlights the significance of synergistically tuning the internal microenvironment of three-dimensional (3D) cell aggregates composed of hepatocyte-like cells from the HepG2 human hepatocellular carcinoma cell line and hepatic stellate cells (HSCs) from the LX-2 cell line to enhance oxygen availability and phenotypic ECM ligand presentation for promoting the native metabolic functions of the human liver. First, fluorinated (PFC) chitosan microparticles (MPs) were generated with a microfluidic chip, then their oxygen transport properties were studied using a custom ruthenium-based oxygen sensing approach. Next, to allow for integrin engagements the surfaces of these MPs were functionalized using liver ECM proteins including fibronectin, laminin-111, laminin-511, and laminin-521, then they were used to assemble composite spheriods along with HepG2 cells and HSCs. After in vitro culture, liver-specific functions and cell adhesion patterns were compared between groups and cells showed enhanced liver phenotypic responses to laminin-511 and 521 as evidenced via enhanced E-cadherin and vinculin expression, as well as albumin and urea secretion. Furthermore, hepatocytes and HSCs exhibited more pronounced phenotypic arrangements when cocultured with laminin-511 and 521 modified MPs providing clear evidence that specific ECM proteins have distinctive roles in the phenotypic regulation of liver cells in engineering 3D spheroids. This study advances efforts to create more physiologically relevant organ models allowing for well-defined conditions and phenotypic cell signaling which together improve the relevance of 3D spheroid and organoid models.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, USA
| | - William D Imes
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Owen S Roberts
- College of Engineering and Polymer Science, The University of Akron, Akron, Ohio, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
4
|
The Challenges of O 2 Detection in Biological Fluids: Classical Methods and Translation to Clinical Applications. Int J Mol Sci 2022; 23:ijms232415971. [PMID: 36555613 PMCID: PMC9786805 DOI: 10.3390/ijms232415971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dissolved oxygen (DO) is deeply involved in preserving the life of cellular tissues and human beings due to its key role in cellular metabolism: its alterations may reflect important pathophysiological conditions. DO levels are measured to identify pathological conditions, explain pathophysiological mechanisms, and monitor the efficacy of therapeutic approaches. This is particularly relevant when the measurements are performed in vivo but also in contexts where a variety of biological and synthetic media are used, such as ex vivo organ perfusion. A reliable measurement of medium oxygenation ensures a high-quality process. It is crucial to provide a high-accuracy, real-time method for DO quantification, which could be robust towards different medium compositions and temperatures. In fact, biological fluids and synthetic clinical fluids represent a challenging environment where DO interacts with various compounds and can change continuously and dynamically, and further precaution is needed to obtain reliable results. This study aims to present and discuss the main oxygen detection and quantification methods, focusing on the technical needs for their translation to clinical practice. Firstly, we resumed all the main methodologies and advancements concerning dissolved oxygen determination. After identifying the main groups of all the available techniques for DO sensing based on their mechanisms and applicability, we focused on transferring the most promising approaches to a clinical in vivo/ex vivo setting.
Collapse
|
5
|
Zeyrek Ongun M, Oguzlar S, Erol M. Effects of NiO, SnO 2, and Ni-doped SnO 2 semiconductor metal oxides on the oxygen sensing capacity of H 2TPP. Anal Chim Acta 2022; 1229:340387. [PMID: 36156237 DOI: 10.1016/j.aca.2022.340387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Improving the performance of optical oxygen sensors can be accomplished by adding metal oxide semiconductors (MOSs) additives to the composition comprising an oxygen-sensing agent immobilized in a polymeric thin film. For several decades, MOSs have attracted great interest in gas sensors due to their high sensitivity to many target gasses. Herein, meso-tetraphenylporphyrin (H2TPP) dye was immobilized into the poly(1-trimethylsilyl-1-propyne) (poly(TMSP)) silicone rubber in the presence of NiO, SnO2, Ni:SnO2 metal oxide particles as additives, and their thin films were prepared to investigate oxygen-sensitive optical chemical sensor properties. The characterizations of the synthesized metal oxide powders were carried out through XPS, XRD, FT-IR, PL spectroscopy and SEM methods. Intensity-based spectra and decay kinetics of H2TPP-based thin films were investigated for the concentration range of 0%-100% [O2]. The oxygen sensitivity (I0/I100) of the porphyrin was calculated as 70%. Whereas the relative signal intensity values of H2TPP-based sensor slides were measured as 75%, 80%, and 88% in the presence of NiO, SnO2, Ni:SnO2 additives, respectively. The H2TPP in combination with Ni:SnO2 semiconductor provided a higher I0/I100 value, larger response range, higher Stern-Volmer constant (KSV) value, and faster response time compared to the undoped form, and also NiO and SnO2 additive-doped forms of H2TPP. The response and the recovery times of the porphyrin-based sensing slide along with Ni:SnO2 additives have been measured as 12 and 50 s. These results make the H2TPP along with the MOSs promising candidates as oxygen probes.
Collapse
Affiliation(s)
- Merve Zeyrek Ongun
- Dokuz Eylul University, Chemistry Technology Program, Izmir Vocational High School, Izmir, Turkey.
| | - Sibel Oguzlar
- Dokuz Eylul University, Center for Fabrication and Application of Electronic Materials, Izmir, Turkey
| | - Mustafa Erol
- Dokuz Eylul University, Center for Fabrication and Application of Electronic Materials, Izmir, Turkey; Department of Metallurgical and Materials Engineering, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
6
|
Materials for Chemical Sensing: A Comprehensive Review on the Recent Advances and Outlook Using Ionic Liquids, Metal–Organic Frameworks (MOFs), and MOF-Based Composites. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to measure and monitor the concentration of specific chemical and/or gaseous species (i.e., “analytes”) is the main requirement in many fields, including industrial processes, medical applications, and workplace safety management. As a consequence, several kinds of sensors have been developed in the modern era according to some practical guidelines that regard the characteristics of the active (sensing) materials on which the sensor devices are based. These characteristics include the cost-effectiveness of the materials’ manufacturing, the sensitivity to analytes, the material stability, and the possibility of exploiting them for low-cost and portable devices. Consequently, many gas sensors employ well-defined transduction methods, the most popular being the oxidation (or reduction) of the analyte in an electrochemical reactor, optical techniques, and chemiresistive responses to gas adsorption. In recent years, many of the efforts devoted to improving these methods have been directed towards the use of certain classes of specific materials. In particular, ionic liquids have been employed as electrolytes of exceptional properties for the preparation of amperometric gas sensors, while metal–organic frameworks (MOFs) are used as highly porous and reactive materials which can be employed, in pure form or as a component of MOF-based functional composites, as active materials of chemiresistive or optical sensors. Here, we report on the most recent developments relative to the use of these classes of materials in chemical sensing. We discuss the main features of these materials and the reasons why they are considered interesting in the field of chemical sensors. Subsequently, we review some of the technological and scientific results published in the span of the last six years that we consider among the most interesting and useful ones for expanding the awareness on future trends in chemical sensing. Finally, we discuss the prospects for the use of these materials and the factors involved in their possible use for new generations of sensor devices.
Collapse
|
7
|
Zhao Y, Zhang H, Jin Q, Jia D, Liu T. Ratiometric Optical Fiber Dissolved Oxygen Sensor Based on Fluorescence Quenching Principle. SENSORS 2022; 22:s22134811. [PMID: 35808306 PMCID: PMC9269258 DOI: 10.3390/s22134811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
In this study, a ratiometric optical fiber dissolved oxygen sensor based on dynamic quenching of fluorescence from a ruthenium complex is reported. Tris(4,7-diphenyl-1,10-phenanthrolin) ruthenium(II) dichloride complex (Ru(dpp)32+) is used as an oxygen-sensitive dye, and semiconductor nanomaterial CdSe/ZnS quantum dots (QDs) are used as a reference dye by mixing the two substances and coating it on the plastic optical fiber end to form a composite sensitive film. The linear relationship between the relative fluorescence intensity of the ruthenium complex and the oxygen concentration is described using the Stern–Volmer equation, and the ruthenium complex doping concentration in the sol-gel film is tuned. The sensor is tested in gaseous oxygen and aqueous solution. The experimental results indicate that the measurement of dissolved oxygen has a lower sensitivity in an aqueous environment than in a gaseous environment. This is due to the uneven distribution of oxygen in aqueous solution and the low solubility of oxygen in water, which results in a small contact area between the ruthenium complex and oxygen in solution, leading to a less-severe fluorescence quenching effect than that in gaseous oxygen. In detecting dissolved oxygen, the sensor has a good linear Stern–Volmer calibration plot from 0 to 18.25 mg/L, the linearity can reach 99.62%, and the sensitivity can reach 0.0310/[O2] unit. The salinity stability, repeatability, and temperature characteristics of the sensor are characterized. The dissolved oxygen sensor investigated in this research could be used in various marine monitoring and environmental protection applications.
Collapse
Affiliation(s)
- Yongkun Zhao
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
| | - Hongxia Zhang
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
- Correspondence:
| | - Qingwen Jin
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
- School of Information Resources Management, Renmin University of China, Beijing 100872, China
| | - Dagong Jia
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
| | - Tiegen Liu
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
| |
Collapse
|
8
|
Xu Y, Qi G, Yan L, Yue B, Yang Y, Hu D. Development of dissolved oxygen sensor based on time-domain lifetime measurement with a film fabricated by embedding PtOEP in a highly stable and hydrophobic fluorinated matrix. Chem Asian J 2022; 17:e202200365. [PMID: 35587017 DOI: 10.1002/asia.202200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Indexed: 11/08/2022]
Abstract
A dissolved oxygen sensor was developed based on time-domain lifetime measurement with an oxygen sensing film. The oxygen sensing film was fabricated by embedding PtOEP in a highly stable and highly hydrophobic fluorinated matrix synthesized from methacrylate, fluorinated methacrylate, and 3-(tris(trimethylsilyloxy)silyl)propyl methacrylate via free radical polymerization. The fluorinated methacrylate provided the high stability and the 3-(tris(trimethylsilyloxy)silyl)propyl methacrylate provided the extra hydrophobicity. The PtOEP was excited using pulsed signals from a green-light LED and the fluorescence lifetime was evaluated by time-domain lifetime measurement. The dynamical quenching of fluorescence response by dissolved oxygen was calibrated using the Stern-Volmer plot with a high [[EQUATION]] ratio of 5.68 and a Stern-Volmer constant of 0.112 mg -1 dm 3 . It was demonstrated that the dissolved oxygen sensing film showed high stability under the varied excitation intensity and long-term stability in the accelerated aging experiment and the repeated freeze-thaw-cycling tests.
Collapse
Affiliation(s)
- Yihan Xu
- Shanghai University, college of sciences, CHINA
| | - Guoping Qi
- Shanghai University, college of sciences, CHINA
| | - Liuming Yan
- Shanghai University, college of sciences, CHINA
| | - Baohua Yue
- Shanghai University, Department of chemistry, 99 Shangda Road, CHINA
| | - Yang Yang
- Nanjing Qiue Electronic Technology Co. Ltd., Zhongnan Zhigu Industrual Park, CHINA
| | - Desheng Hu
- Nanjing Qique Electronic Technology Co., Ltd, Zhongnan Zhigu Industrual Park, CHINA
| |
Collapse
|
9
|
ZEYREK ONGUN M. Enhancement of the O2 Sensitivity: ZnO, CuO, and ZnO/CuO Hybrid Additives' Effect on Meso-Tetraphenylporphyrin Dye. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1031613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Behera A, Pradhan SP, Ahmed FK, Abd-Elsalam KA. Enzymatic synthesis of silver nanoparticles: Mechanisms and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:699-756. [DOI: 10.1016/b978-0-12-824508-8.00030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Zhao Y, Liu X, Jiang Y, Mao L, Wang H, Liu L. A shining proposal for the detection of dissolved O 2 in aqueous medium: Self-calibrated optical sensing via a covalent hybrid structure of carbon-dots&Ru. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120003. [PMID: 34090096 DOI: 10.1016/j.saa.2021.120003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
O2 is a life-supporting gas and has been widely recognized as an important analyte in life science, medical care and environmental science. Optical sensing for gaseous oxygen has been widely reported owing to the simple, cost-effective and easy-to-go procedure. On the other hand, optical sensors for dissolved oxygen in aqueous media have been rarely reported, since most of them are incompatible with water, leading to poor sensitivity and linearity. In this effort, we tried the combination of Ru(II)-bpy complex and carbon dots (CDs) via covalent bonds, where bpy = bipyridine. A hybrid structure, named as Ru@CD, was constructed for the detection of dissolved oxygen, using Ru(II)-bpy as sensing probe and CDs as water-compatible supporting matrix. Ru@CD was carefully characterized to confirm its hybrid structure. Detailed analysis suggested that its emission showed self-calibrated sensing signals for dissolved oxygen. A good linearity of 99.1% was realized. Its sensitivity (3.18) was higher than most literature values for dissolved oxygen detection. Its working equation was confirmed as a corrected Stern-Volmer equation (Lehrer mode). Good selectivity and signal stability were observed.
Collapse
Affiliation(s)
- Yanping Zhao
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China
| | - Xuelian Liu
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China
| | - Yuanyuan Jiang
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China
| | - Li Mao
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China
| | - Hongjun Wang
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China.
| | - Liang Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Gkika KS, Kargaard A, Burke CS, Dolan C, Heise A, Keyes TE. Ru(ii)/BODIPY core co-encapsulated ratiometric nanotools for intracellular O 2 sensing in live cancer cells. RSC Chem Biol 2021; 2:1520-1533. [PMID: 34704057 PMCID: PMC8496004 DOI: 10.1039/d1cb00102g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Oxygen is a crucial reagent in many biochemical processes within living cells and its concentration can be an effective marker in disease, particularly in cancer where tissue hypoxia has been shown to indicate tumour growth. Probes that can reflect the oxygen concentration and distribution using ratiometric signals can be applied to a range of conventional methods without the need for specialised equipment and are particularly useful. The preparation and in cellulo study of luminescent ratiometric core–shell nanoparticles are presented. Here, a new lipophilic and oxygen-responsive Ru(ii) tris-heteroleptic polypyridyl complex is co-encapsulated with a reference BODIPY dye into the core of poly-l-lysine-coated polystyrene particles. The co-core encapsulation ensures oxygen response but reduces the impact of the environment on both probes. Single wavelength excitation of the particles, suspended in aqueous buffer, at 480 nm, triggers well-resolved dual emission from both dyes with peak maxima at 515 nm and 618 nm. A robust ratiometric oxygen response is observed from water, with a linear dynamic range of 3.6–262 μM which matches well with typical biological ranges. The uptake of RuBDP NPs was found to be cell-line dependent, but in cancerous cell lines, the particles were strongly permeable with late endosomal and partial lysosomal co-staining observed within 3 to 4 hours, eventually leading to extensive staining of the cytoplasm. The co-localisation of the ruthenium and BODIPY emission confirms that the particles remain intact in cellulo with no indication of dye leaching. The ratiometric O2 sensing response of the particles in cellulo was demonstrated using a plate-based assay and by confocal xyλ scanning of cells exposed to hypoxic conditions. Uptake and quantitative ratiometric oxygen sensing response of core–shell nanoparticles containing ruthenium probe and BODIPY reference is demonstrated using a plate reader-based assay and by confocal xyλ scanning of live cancer cells under hypoxic conditions.![]()
Collapse
Affiliation(s)
- Karmel Sofia Gkika
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin Dublin 9 Ireland
| | | | - Christopher S Burke
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin Dublin 9 Ireland .,Department of Chemistry, RCSI Dublin Ireland
| | - Ciaran Dolan
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin Dublin 9 Ireland
| | - Andreas Heise
- Department of Chemistry, RCSI Dublin Ireland.,CÚRAM, SFI Research Centre for Medical Devices RCSI Dublin D02 Ireland.,AMBER, The SFI Advanced Materials and Bioengineering Research Centre RCSI Dublin D02 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin Dublin 9 Ireland
| |
Collapse
|
13
|
SHIMIZU N, MATSUMURA T, YAMASHITA K, MIYAKE T, SAWADA H. Analyses of Iridium(III) and Ruthenium(II) Phosphorescent Complexes with LC-TOFMS and LC-MS/MS. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Cost-Effective Real-Time Metabolic Profiling of Cancer Cell Lines for Plate-Based Assays. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A fundamental phenotype of cancer cells is their metabolic profile, which is routinely described in terms of glycolytic and respiratory rates. Various devices and protocols have been designed to quantify glycolysis and respiration from the rates of acid production and oxygen utilization, respectively, but many of these approaches have limitations, including concerns about their cost-ineffectiveness, inadequate normalization procedures, or short probing time-frames. As a result, many methods for measuring metabolism are incompatible with cell culture conditions, particularly in the context of high-throughput applications. Here, we present a simple plate-based approach for real-time measurements of acid production and oxygen depletion under typical culture conditions that enable metabolic monitoring for extended periods of time. Using this approach, it is possible to calculate metabolic fluxes and, uniquely, describe the system at steady-state. By controlling the conditions with respect to pH buffering, O2 diffusion, medium volume, and cell numbers, our workflow can accurately describe the metabolic phenotype of cells in terms of molar fluxes. This direct measure of glycolysis and respiration is conducive for between-runs and even between-laboratory comparisons. To illustrate the utility of this approach, we characterize the phenotype of pancreatic ductal adenocarcinoma cell lines and measure their response to a switch of metabolic substrate and the presence of metabolic inhibitors. In summary, the method can deliver a robust appraisal of metabolism in cell lines, with applications in drug screening and in quantitative studies of metabolic regulation.
Collapse
|
15
|
Ratiometric Sensor Based on PtOEP-C6/Poly (St-TFEMA) Film for Automatic Dissolved Oxygen Content Detection. SENSORS 2020; 20:s20216175. [PMID: 33138300 PMCID: PMC7663556 DOI: 10.3390/s20216175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/04/2022]
Abstract
A ratiometric oxygen sensor based on a platinum octaethylporphyrin (PtOEP)–coumarin 6 (C6)/poly (styrene-trifluoroethyl methacrylate) (poly (St-TFEMA)) film was developed for automatic dissolved oxygen (DO) detection. The oxygen-sensing film according to the dynamic quenching mechanism was prepared by embedding platinum octaethylporphyrin (PtOEP) and coumarin 6 (C6) in poly (styrene-trifluoroethyl methacrylate) (poly (St-TFEMA)). The optical parameter (OP) was defined as the ratio of the oxygen-insensitive fluorescence from C6 to the oxygen-sensitive phosphorescence from PtOEP. A calibration equation expressing the correlation between the OP values and DO content described by a linear function was obtained. A program based on the Labview software was developed for monitoring the real-time DO content automatically. The influence of the excitation intensity and fluctuation on the OP values and the direct luminescence signal (integration areas) was compared, verifying the strong anti-interference ability of the sensor. The detection limit of the sensor was determined to be 0.10 (1) mg/L. The switching response time and recovery time of the sensor were 0.4 and 1.3 s, respectively. Finally, the oxygen sensor was applied to the investigation of the kinetic process of the DO content variation, which revealed an exponential relationship with time.
Collapse
|
16
|
Zeyrek Ongun M, Sahin M, Akbal T, Avsar N, Karakas H, Ertekin K, Atilla D, İbişoğlu H, Topal SZ. Synthesis, characterization and oxygen sensitivity of cyclophosphazene equipped-iridium (III) complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118490. [PMID: 32502815 DOI: 10.1016/j.saa.2020.118490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In this work, synthesis, characterization and oxygen sensing abilities of the cyclophosphazene-free and phenyl and naphtoxy-substituted cyclophosphazene bearing iridium (III) complexes (Ir-I, Ir-II and Ir-III) were presented. The complexes were characterized by NMR, absorption and emission spectroscopies, luminescence lifetime and quantum yield measurements. The molecules were successfully embedded in the ethyl cellulose matrix to fabricate the oxygen sensing electrospun mats via electrospinning technique. Oxygen induced luminescence of the iridium complexes around 600 nm has been followed as the analytical signal during oxygen sensitivity studies. They exhibited blue shifted, quenched emission towards triplet oxygen. The napthoxy substituted derivative exhibited 2.70 fold enhanced I0/I100 ratio compared to the free form in terms of the relative signal change. Room-temperature luminescence abilities, high photostabilities, large Stoke's shift values extending to 200 nm and high spectral response, especially between 0 and 10% pO2 make them promising candidates as oxygen probes. The test materials can be stored at the ambient air of the laboratory for at least 24 months.
Collapse
Affiliation(s)
- Merve Zeyrek Ongun
- Dokuz Eylul University, Chemistry Technology Program, Izmir Vocational High School, 35360 Izmir, Turkey
| | - Murat Sahin
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Tugce Akbal
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Neslihan Avsar
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Hayriye Karakas
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Kadriye Ertekin
- Dokuz Eylul University, Faculty of Sciences, Department of Chemistry, 35160 Buca, Izmir, Turkey
| | - Devrim Atilla
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Hanife İbişoğlu
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey.
| | - Sevinc Zehra Topal
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey.
| |
Collapse
|
17
|
Shehata N, Kandas I, Samir E. In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor for Dissolved Oxygen. NANOMATERIALS 2020; 10:nano10020314. [PMID: 32059378 PMCID: PMC7075203 DOI: 10.3390/nano10020314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022]
Abstract
Cerium oxide (ceria) nanoparticles (NPs) have been proved to be an efficient optical fluorescent material through generating visible emission (~530 nm) under violet excitation. This feature allowed ceria NPs to be used as an optical sensor via the fluorescence quenching Technique. In this paper, the impact of in-situ embedded gold nanoparticles (Au NPs) inside ceria nanoparticles was studied. Then, gold–ceria NPs were used for sensing dissolved oxygen (DO) in aqueous media. It was observed that both fluorescence intensity and lifetime were changed due to increased concentration of DO. Added gold was found to enhance the sensitivity of ceria to DO quencher detection. This enhancement was due to optical coupling between the fluorescence emission spectrum of ceria with the surface plasmonic resonance of gold nanoparticles. In addition, gold caused the decrease of ceria nanoparticles’ bandgap, which indicates the formation of more oxygen vacancies inside the non-stoichiometric crystalline structure of ceria. The Stern–Volmer constant, which indicates the sensitivity of optical sensing material, of ceria–gold NPs with added DO was found to be 893.7 M−1, compared to 184.6 M−1 to in case of ceria nanoparticles only, which indicates a superior optical sensitivity to DO compared to other optical sensing materials used in the literature to detect DO. Moreover, the fluorescence lifetime was found to be changed according to the variation of added DO concentration. The optically-sensitivity-enhanced ceria nanoparticles due to embedded gold nanoparticles can be a promising sensing host for dissolved oxygen in a wide variety of applications including biomedicine and water quality monitoring.
Collapse
Affiliation(s)
- Nader Shehata
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center, Alexandria University, Alexandria 21544, Egypt;
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
- USTAR Bio-innovation center, Utah State University, Logan, UT 84341, USA
- Kuwait College of Science and Technology, Doha Area, 7th Ring Road, Safat 13133, Kuwait
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +20-109-116-5300
| | - Ishac Kandas
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center, Alexandria University, Alexandria 21544, Egypt;
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
- Kuwait College of Science and Technology, Doha Area, 7th Ring Road, Safat 13133, Kuwait
| | - Effat Samir
- Department of Electrical Engineering, Old Dominion University, Norfolk, VA 23508, USA;
| |
Collapse
|
18
|
Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to Online Intelligent Detection. SENSORS 2019; 19:s19183995. [PMID: 31527482 PMCID: PMC6767127 DOI: 10.3390/s19183995] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Dissolved oxygen is an important index to evaluate water quality, and its concentration is of great significance in industrial production, environmental monitoring, aquaculture, food production, and other fields. As its change is a continuous dynamic process, the dissolved oxygen concentration needs to be accurately measured in real time. In this paper, the principles, main applications, advantages, and disadvantages of iodometric titration, electrochemical detection, and optical detection, which are commonly used dissolved oxygen detection methods, are systematically analyzed and summarized. The detection mechanisms and materials of electrochemical and optical detection methods are examined and reviewed. Because external environmental factors readily cause interferences in dissolved oxygen detection, the traditional detection methods cannot adequately meet the accuracy, real-time, stability, and other measurement requirements; thus, it is urgent to use intelligent methods to make up for these deficiencies. This paper studies the application of intelligent technology in intelligent signal transfer processing, digital signal processing, and the real-time dynamic adaptive compensation and correction of dissolved oxygen sensors. The combined application of optical detection technology, new fluorescence-sensitive materials, and intelligent technology is the focus of future research on dissolved oxygen sensors.
Collapse
|
19
|
Maddipatla D, Narakathu BB, Ochoa M, Rahimi R, Zhou J, Yoon CK, Jiang H, Al-Zubaidi H, Obare SO, Zieger MA, Ziaie B, Atashbar MZ. Rapid prototyping of a novel and flexible paper based oxygen sensing patch via additive inkjet printing process. RSC Adv 2019; 9:22695-22704. [PMID: 35519443 PMCID: PMC9067098 DOI: 10.1039/c9ra02883h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
A novel and flexible oxygen sensing patch was successfully developed for wearable, industrial, food packaging, pharmaceutical and biomedical applications using a cost-efficient and rapid prototypable additive inkjet print manufacturing process. An oxygen sensitive ink was formulated by dissolving ruthenium dye and ethyl cellulose polymer in ethanol in a 1 : 1 : 98 (w/w/w) ratio. The patch was fabricated by depositing the oxygen sensitive ink on a flexible parchment paper substrate using an inkjet printing process. A maximum absorbance from 430 nm to 480 nm and a fluorescence of 600 nm was observed for the oxygen sensitive ink. The capability of the oxygen sensitive patch was investigated by measuring the fluorescence quenching lifetime of the printed dye for varying oxygen concentration levels. A fluorescence lifetime decay (τ) from ≈4 μs to ≈1.9 μs was calculated for the printed oxygen sensor patch, for oxygen concentrations varying from ≈5 mg L−1 to ≈25 mg L−1. A sensitivity of 0.11 μs mg L−1 and a correlation coefficient of 0.9315 was measured for the printed patches. The results demonstrated the feasibility of employing an inkjet printing process for the rapid prototyping of flexible and moisture resistant oxygen sensitive patches which facilitates a non-invasive method for monitoring oxygen and its concentration levels. A paper-based low cost and rapid prototypable flexible oxygen sensing patch was developed for the first time using a cost-efficient additive inkjet print manufacturing process for wearable, food packaging, pharmaceutical and biomedical applications.![]()
Collapse
Affiliation(s)
- Dinesh Maddipatla
- Department of Electrical and Computer Engineering
- Western Michigan University
- USA
| | - Binu B. Narakathu
- Department of Electrical and Computer Engineering
- Western Michigan University
- USA
| | - Manuel Ochoa
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Rahim Rahimi
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Jiawei Zhou
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Chang K. Yoon
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Hongjie Jiang
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | | | | | | | - Babak Ziaie
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Massood Z. Atashbar
- Department of Electrical and Computer Engineering
- Western Michigan University
- USA
| |
Collapse
|
20
|
Mirabello V, Cortezon-Tamarit F, Pascu SI. Oxygen Sensing, Hypoxia Tracing and in Vivo Imaging with Functional Metalloprobes for the Early Detection of Non-communicable Diseases. Front Chem 2018; 6:27. [PMID: 29527524 PMCID: PMC5829448 DOI: 10.3389/fchem.2018.00027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/02/2018] [Indexed: 01/10/2023] Open
Abstract
Hypoxia has been identified as one of the hallmarks of tumor environments and a prognosis factor in many cancers. The development of ideal chemical probes for imaging and sensing of hypoxia remains elusive. Crucial characteristics would include a measurable response to subtle variations of pO2 in living systems and an ability to accumulate only in the areas of interest (e.g., targeting hypoxia tissues) whilst exhibiting kinetic stabilities in vitro and in vivo. A sensitive probe would comprise platforms for applications in imaging and therapy for non-communicable diseases (NCDs) relying on sensitive detection of pO2. Just a handful of probes for the in vivo imaging of hypoxia [mainly using positron emission tomography (PET)] have reached the clinical research stage. Many chemical compounds, whilst presenting promising in vitro results as oxygen-sensing probes, are facing considerable disadvantages regarding their general application in vivo. The mechanisms of action of many hypoxia tracers have not been entirely rationalized, especially in the case of metallo-probes. An insight into the hypoxia selectivity mechanisms can allow an optimization of current imaging probes candidates and this will be explored hereby. The mechanistic understanding of the modes of action of coordination compounds under oxygen concentration gradients in living cells allows an expansion of the scope of compounds toward in vivo applications which, in turn, would help translate these into clinical applications. We summarize hereby some of the recent research efforts made toward the discovery of new oxygen sensing molecules having a metal-ligand core. We discuss their applications in vitro and/or in vivo, with an appreciation of a plethora of molecular imaging techniques (mainly reliant on nuclear medicine techniques) currently applied in the detection and tracing of hypoxia in the preclinical and clinical setups. The design of imaging/sensing probe for early-stage diagnosis would longer term avoid invasive procedures providing platforms for therapy monitoring in a variety of NCDs and, particularly, in cancers.
Collapse
|
21
|
Kenney RM, Boyce MW, Whitman NA, Kromhout BP, Lockett MR. A pH-Sensing Optode for Mapping Spatiotemporal Gradients in 3D Paper-Based Cell Cultures. Anal Chem 2018; 90:2376-2383. [PMID: 29323486 PMCID: PMC6168333 DOI: 10.1021/acs.analchem.7b05015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Paper-based cultures are an emerging platform for preparing 3D tissue-like structures. Chemical gradients can be imposed upon these cultures, generating microenvironments similar to those found in poorly vascularized tumors. There is increasing evidence that the tumor microenvironment is responsible for promoting drug resistance and increased invasiveness. Acidosis, or the acidification of the extracellular space, is particularly important in promoting these aggressive cancer phenotypes. To better understand how cells respond to acidosis there is a need for 3D culture platforms that not only model relevant disease states but also contain sensors capable of quantifying small molecules in the extracellular environment. In this work, we describe pH-sensing optodes that are capable of generating high spatial and temporal resolution maps of pH gradients in paper-based cultures. This sensor was fabricated by suspending microparticles containing pH-sensitive (fluorescein) and pH-insensitive (diphenylanthracene) dyes in a polyurethane hydrogel, which was then coated onto a transparent film. The pH-sensing films have a fast response time, are reversible, stable in long-term culture environments, have minimal photobleaching, and are not cytotoxic. These films have a pKa of 7.61 ± 0.04 and are sensitive in the pH range corresponding to normal and tumorigenic tissues. With these optodes, we measured the spatiotemporal evolution of pH gradients in paper-based tumor models.
Collapse
Affiliation(s)
- Rachael M. Kenney
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew W. Boyce
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Nathan A. Whitman
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Brenden P. Kromhout
- CData Software Inc., 101 Europa Drive #110, Chapel Hill, North Carolina 27517, United States
| | - Matthew R. Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, North Carolina 27599-7295, United States
| |
Collapse
|