1
|
Schenk M, König N, Hey-Hawkins E, Beck-Sickinger AG. Illuminating the Path to Enhanced Bioimaging by Phosphole-based Fluorophores. Chembiochem 2024; 25:e202300857. [PMID: 38206088 DOI: 10.1002/cbic.202300857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
As the research of biological systems becomes increasingly complex, there is a growing demand for fluorophores with a diverse range of wavelengths. In this study, we introduce phosphole-based fluorophores that surpass existing options like dansyl chloride. The reactive S-Cl bond in chlorosulfonylimino-5-phenylphosphole derivatives allows rapid and direct coupling to peptides making the fluorophores easily introducible to peptides. This coupling process occurs under mild conditions, demonstrated for [F7 ,P34 ]-NPY and its shorter analogues. Peptides linked with our fluorophores exhibit similar receptor activation to the control peptide, while maintaining high stability and low toxicity, making them ideal biolabeling reagents. In fluorescence microscopy experiments, they can be easily visualized even at low concentrations, without suffering from the typical issue of bleaching. These phosphole-based fluorophores represent a significant leap forward in the field. Their versatility, ease of modification, superior performance, and applicability in biological labeling make them a promising choice for researchers seeking advanced tools to unravel the details of complex biological systems.
Collapse
Affiliation(s)
- Mareike Schenk
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Nils König
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Annette G Beck-Sickinger
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Tota EM, Devaraj NK. Site-specific Covalent Labeling of DNA Substrates by an RNA Transglycosylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525207. [PMID: 36747847 PMCID: PMC9900779 DOI: 10.1101/2023.01.23.525207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacterial tRNA guanine transglycosylases (TGTs) catalyze the exchange of guanine for the 7-deazaguanine queuine precursor, prequeuosine1 (preQ1). While the native nucleic acid substrate for bacterial TGTs is the anticodon loop of queuine-cognate tRNAs, the minimum recognition sequence for the enzyme is a structured hairpin containing the target G nucleobase in a "UGU" loop motif. Previous work has established an RNA modification system, RNA-TAG, in which E. coli TGT exchanges the target G on an RNA of interest for chemically modified preQ1 substrates linked to a small molecule reporter such as biotin or a fluorophore. While extending the substrate scope of RNA transglycosylases to include DNA would enable numerous applications, it has been previously reported that TGT is incapable of modifying native DNA. Here we demonstrate that TGT can in fact recognize and label specific DNA substrates. Through iterative testing of rationally mutated DNA hairpin sequences, we determined the minimal sequence requirements for transglycosylation of unmodified DNA by E. coli TGT. Controlling steric constraint in the DNA hairpin dramatically affects labeling efficiency, and, when optimized, can lead to near quantitative site-specific modification. We demonstrate the utility of our newly developed DNA-TAG system by rapidly synthesizing probes for fluorescent Northern blotting of spliceosomal U6 RNA and RNA FISH visualization of the long noncoding RNA, MALAT1. The ease and convenience of the DNA-TAG system will provide researchers with a tool for accessing a wide variety of affordable modified DNA substrates.
Collapse
|
3
|
Paththamperuma C, Page RC. Fluorescence dequenching assay for the activity of TEV protease. Anal Biochem 2022; 659:114954. [PMID: 36265691 PMCID: PMC9662696 DOI: 10.1016/j.ab.2022.114954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Tobacco etch virus (TEV) protease is a widely used protease for fusion tag cleavage. Despite its widespread usage, an assay to quickly and easily quantify its activity in laboratory settings is still lacking. Thus, researchers may encounter inefficient cleavage of the desired fusion proteins due to poor activity of a given TEV protease preparation. Here, we describe the development and implementation of a fluorescence dequenching-based assay to quantify TEV protease activity and assess kinetic parameters. The peptide substrate used in this assay consists of a C-terminal TAMRA fluorophore, an N-terminal fluorescein fluorophore, and the canonical TEV protease recognition sequence. The assay is based on a reduction of fluorescence quenching of fluorescein upon cleavage by TEV protease. The substrate peptide was studied spectroscopically to assess feasibility and to propose a plausible mechanism of the assay. The assay was optimized and applied to obtain rapid assessments of TEV protease activity in purified samples and crude lysate extracts. The kinetic data obtained from improved TEV protease variants were compared with a traditional SDS-PAGE assay. Finally, the assay was applied to determine the optimum pH for TEV protease. Further, the study found that the assay is a rapid and simple approach to quantify TEV protease activity. The findings of the assay on crude lysate extracts, activity assay of TEV protease variants, and assessment of optimum pH for TEV protease reactions demonstrate the robust utility of the assay.
Collapse
Affiliation(s)
- Chathura Paththamperuma
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States.
| |
Collapse
|
4
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
5
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
6
|
Shi Y, Wang J, Mu K, Liu S, Yang G, Zhang M, Yang J. Copper (II) Ion-Modified Gold Nanoclusters as Peroxidase Mimetics for the Colorimetric Detection of Pyrophosphate. SENSORS 2021; 21:s21165538. [PMID: 34450980 PMCID: PMC8400922 DOI: 10.3390/s21165538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 02/04/2023]
Abstract
Copper (II) ions have been shown to greatly improve the chemical stability and peroxidase-like activity of gold nanoclusters (AuNCs). Since the affinity between Cu2+ and pyrophosphate (PPi) is higher than that between Cu2+ and AuNCs, the catalytic activity of AuNCs-Cu2+ decreases with the introduction of PPi. Based on this principle, a new colorimetric detection method of PPi with high sensitivity and selectivity was developed by using AuNCs-Cu2+ as a probe. Under optimized conditions, the detection limit of PPi was 0.49 nM with a linear range of 0.51 to 30,000 nM. The sensitivity of the method was three orders of magnitude higher than that of a fluorescence method using AuNCs-Cu2+ as the probe. Finally, the AuNCs-Cu2+ system was successfully applied to directly determine the concentration of PPi in human urine samples.
Collapse
Affiliation(s)
- Yunjing Shi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| | - Jinjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
- Correspondence: ; Tel.: +86-21-6779-1221
| | - Kun Mu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| | - Guang Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China;
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| | - Jingxia Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| |
Collapse
|
7
|
Mende M, Tsouka A, Heidepriem J, Paris G, Mattes DS, Eickelmann S, Bordoni V, Wawrzinek R, Fuchsberger FF, Seeberger PH, Rademacher C, Delbianco M, Mallagaray A, Loeffler FF. On-Chip Neo-Glycopeptide Synthesis for Multivalent Glycan Presentation. Chemistry 2020; 26:9954-9963. [PMID: 32315099 PMCID: PMC7496964 DOI: 10.1002/chem.202001291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/17/2020] [Indexed: 11/11/2022]
Abstract
Single glycan-protein interactions are often weak, such that glycan binding partners commonly utilize multiple, spatially defined binding sites to enhance binding avidity and specificity. Current array technologies usually neglect defined multivalent display. Laser-based array synthesis technology allows for flexible and rapid on-surface synthesis of different peptides. By combining this technique with click chemistry, neo-glycopeptides were produced directly on a functionalized glass slide in the microarray format. Density and spatial distribution of carbohydrates can be tuned, resulting in well-defined glycan structures for multivalent display. The two lectins concanavalin A and langerin were probed with different glycans on multivalent scaffolds, revealing strong spacing-, density-, and ligand-dependent binding. In addition, we could also measure the surface dissociation constant. This approach allows for a rapid generation, screening, and optimization of a multitude of multivalent scaffolds for glycan binding.
Collapse
Affiliation(s)
- Marco Mende
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Alexandra Tsouka
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimalle 2214195BerlinGermany
| | - Jasmin Heidepriem
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimalle 2214195BerlinGermany
| | - Grigori Paris
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Daniela S. Mattes
- Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stephan Eickelmann
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Vittorio Bordoni
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Robert Wawrzinek
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Felix F. Fuchsberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimalle 2214195BerlinGermany
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Alvaro Mallagaray
- Institut für Chemie und MetabolomicsUniversität zu LübeckRatzeburger Allee 16023562LübeckGermany
| | - Felix F. Loeffler
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| |
Collapse
|
8
|
Synthesis of Quenchbodies for One-Pot Detection of Stimulant Drug Methamphetamine. Methods Protoc 2020; 3:mps3020043. [PMID: 32545237 PMCID: PMC7359713 DOI: 10.3390/mps3020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
The problem of illicit drug use and addiction is an escalating issue worldwide. As such, fast and precise detection methods are needed to help combat the problem. Herein, the synthesis method for an anti-methamphetamine Quenchbody (Q-body), a promising sensor for use in simple and convenient assays, has been described. The fluorescence intensity of the Q-body generated by two-site labeling of Escherichia coli produced anti-methamphetamine antigen-binding fragment (Fab) with TAMRA-C2-maleimide dyes increased 5.1-fold over background in the presence of a hydroxyl methamphetamine derivative, 3-[(2S)-2-(methylamino)propyl]phenol. This derivative has the closest structure to methamphetamine of the chemicals available for use in a laboratory. Our results indicate the potential use of this Q-body as a novel sensor for the on-site detection of methamphetamine, in such occasions as drug screening at workplace, suspicious substance identification, and monitoring patients during drug rehabilitation.
Collapse
|
9
|
Hyun S, Li L, Yoon KC, Yu J. An amphipathic cell penetrating peptide aids cell penetration of cyclosporin A and increases its therapeutic effect in an in vivo mouse model for dry eye disease. Chem Commun (Camb) 2019; 55:13657-13660. [PMID: 31595891 DOI: 10.1039/c9cc05960a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell penetrating peptide (CPP), LK-3, causes a ca. 10-fold increase in the cell penetration of cyclosporin A (CsA) at nanomolar concentrations. The results of an in vivo dry eye mouse model demonstrated that a 100-fold lower dose of the CsA/LK-3 complex than that of Restasis® is sufficient to cause the same therapeutic effect.
Collapse
Affiliation(s)
- Soonsil Hyun
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Jaehoon Yu
- Department of Chemistry and Education, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
10
|
Kinoshita-Kikuta E, Kusamoto H, Ono S, Akayama K, Eguchi Y, Igarashi M, Okajima T, Utsumi R, Kinoshita E, Koike T. Quantitative monitoring of His and Asp phosphorylation in a bacterial signaling system by using Phos-tag Magenta/Cyan fluorescent dyes. Electrophoresis 2019; 40:3005-3013. [PMID: 31495938 DOI: 10.1002/elps.201900261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022]
Abstract
In the bacterial signaling mechanisms known as two-component systems (TCSs), signals are generally conveyed by means of a His-Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator. Because of the labile nature of phosphorylated His and Asp residues, few approaches are available that permit a quantitative analysis of their phosphorylation status. Here, we show that the Phos-tag dye technology is suitable for the fluorescent detection of His- and Asp-phosphorylated proteins separated by SDS-PAGE. The dynamics of the His-Asp phosphorelay of recombinant EnvZ-OmpR, a TCS derived from Escherichia coli, were examined by SDS-PAGE followed by simple rapid staining with Phos-tag Magenta fluorescent dye. The technique permitted not only the quantitative monitoring of the autophosphorylation reactions of EnvZ and OmpR in the presence of adenosine triphosphate (ATP) or acetyl phosphate, respectively, but also that of the phosphotransfer reaction from EnvZ to OmpR, which occurs within 1 min in the presence of ATP. Furthermore, we demonstrate profiling of waldiomycin, an HK inhibitor, by using the Phos-tag Cyan gel staining. We believe that the Phos-tag dye technology provides a simple and convenient fluorometric approach for screening of HK inhibitors that have potential as new antimicrobial agents.
Collapse
Affiliation(s)
- Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kusamoto
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Syogo Ono
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Akayama
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | | | - Toshihide Okajima
- Department of Biomolecular Science and Reaction, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ryutaro Utsumi
- Department of Biomolecular Science and Reaction, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
How to evaluate the cellular uptake of CPPs with fluorescence techniques: Dissecting methodological pitfalls associated to tryptophan-rich peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1533-1545. [PMID: 31283917 DOI: 10.1016/j.bbamem.2019.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022]
Abstract
Cell-penetrating peptides (CPP) are broadly recognized as efficient non-viral vectors for the internalization of compounds such as peptides, oligonucleotides or proteins. Characterizing these carriers requires reliable methods to quantify their intracellular uptake. Flow cytometry on living cells is a method of choice but is not always applicable (e.g. big or polarized cells), so we decided to compare it to fluorescence spectroscopy on cell lysates. Surprisingly, for the internalization of a series of TAMRA-labeled conjugates formed of either cationic or amphipathic CPPs covalently coupled to a decamer peptide, we observed important differences in internalization levels between both methods. We partly explained these discrepancies by analyzing the effect of buffer conditions (pH, detergents) and peptide sequence/structure on TAMRA dye accessibility. Based on this analysis, we calculated a correction coefficient allowing a better coherence between both methods. However, an overestimated signal was still observable for both amphipathic peptides using the spectroscopic detection, which could be due to their localization at the cell membrane. Based on several in vitro experiments modeling events at the plasma membrane, we hypothesized that fluorescence of peptides entrapped in the membrane bilayer could be quenched by the tryptophan residues of close transmembrane proteins. During cell lysis, cell membranes are disintegrated liberating the entrapped peptides and restoring the fluorescence, explaining the divergences observed between flow cytometry and spectroscopy on lysates. Overall, our results highlighted major biases in the fluorescently-based quantification of internalized fluorescently-labeled CPP conjugates, which should be considered for accurate uptake quantification.
Collapse
|