1
|
Aydın M, Aydın EB, Sezgintürk MK. Ultrasensitive detection of NSE employing a novel electrochemical immunosensor based on a conjugated copolymer. Analyst 2024; 149:1632-1644. [PMID: 38305417 DOI: 10.1039/d3an01602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In the current study a simple and highly specific label-free impedimetric neuron specific enolase (NSE) immunosensor based on a copolymer matrix-coated disposable electrode was designed and tested. The copolymer matrix was prepared using a very conductive EDOT monomer and semi-conductive thiophene-bearing epoxy groups (ThEp), and the combination of the two monomers enhanced the conductivity and protein loading capacity of the electrode surface. The P(ThEp-co-EDOT) copolymer matrix was prepared via a drop-casting process and anti-NSE recognition biomolecules were immobilized directly on the epoxy groups of the copolymer. After the coupling of NSE molecules on the P(ThEp-co-EDOT) copolymer matrix-coated electrode surface, the charge transfer resistance (Rct) of the biosensor changed dramatically. These changes in Rct were proportional to the NSE molecule amounts captured by anti-NSE molecules. Under optimized experimental conditions, the increment in the Rct value was proportional to the NSE concentration over a range of 0.01 to 25 pg mL-1 with a detection limit (LOD) of 2.98 × 10-3 pg mL-1. This copolymer-coated electrode provided a lower LOD than the other biosensors. In addition, the suggested electrochemical immuno-platform showed good selectivity, superior reproducibility, long-term stability, and high recovery of NSE in real serum (95.64-102.20%) and saliva (95.28-105.35%) samples. These results showed that the present system had great potential for electrochemical biosensing applications.
Collapse
Affiliation(s)
- Muhammet Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
2
|
Miyagawa A, Oshiyama K, Nagatomo S, Nakatani K. Biosensing of DNA through difference in interaction between microparticle and glass plate based on particle dissociation in a coupled acoustic-gravitational field. Talanta 2024; 268:125369. [PMID: 37918248 DOI: 10.1016/j.talanta.2023.125369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
A novel approach for detecting DNA without labeling the target DNA was developed based on the particle dissociation behavior in a combined acoustic-gravitational field. The particles, which are tethered on a glass plate via intermolecular interactions (Fbind), are dissociated by the resultant force of the acoustic radiation force (Fac), which is a function of the applied voltage (V), and the sedimentation force. In this system, V required for particle dissociation is dependent on Fbind. The differences in Fbind were exploited for detecting the target DNA. A glass plate and polystyrene (PS) particles were respectively modified with anchor and capture DNAs. The target DNA induces immobilization of the PS particles on the glass plate through sandwich hybridization, with a large accompanying Fbind. In the absence of the target DNA, the anchor DNA on the glass plate interacted weakly with the capture DNA on the PS particles via direct binding (small Fbind). The particle dissociation behavior varies based on the concentration of the target DNA due to changes in the ratio of the PS particles tethered through direct binding and sandwich hybridization. Target DNA with a length exceeding 12 base pairs (bps) can be detected on the picomolar scale at concentrations of 10-12 to 10-5 M. This detection scheme was applied to a specific sequence of HIV-2 with 20 bps, achieving a picomolar detection limit.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Kengo Oshiyama
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
3
|
Shaterabadi D, Zamani Sani M, Rahdan F, Taghizadeh M, Rafiee M, Dorosti N, Dianatinasab A, Taheri-Anganeh M, Asadi P, Khatami SH, Movahedpour A. MicroRNA biosensors in lung cancer. Clin Chim Acta 2024; 552:117676. [PMID: 38007056 DOI: 10.1016/j.cca.2023.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Lung cancer has been one of the leading causes of death over the past century. Unfortunately, the reliance on conventional methods to diagnose the phenotypic properties of tumors hinders early-stage cancer diagnosis. However, recent advancements in identifying disease-specific nucleotide biomarkers, particularly microRNAs, have brought us closer to early-stage detection. The roles of miR-155, miR-197, and miR-182 have been established in stage I lung cancer. Recent progress in synthesizing nanomaterials with higher conductivity has enhanced the diagnostic sensitivity of electrochemical biosensors, which can detect low concentrations of targeted biomarkers. Therefore, this review article focuses on exploring electrochemical biosensors based on microRNA in lung cancer.
Collapse
Affiliation(s)
- Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - Nafiseh Dorosti
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
4
|
Kokabi M, Tahir MN, Singh D, Javanmard M. Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis. BIOSENSORS 2023; 13:884. [PMID: 37754118 PMCID: PMC10526782 DOI: 10.3390/bios13090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Cancer is a fatal disease and a significant cause of millions of deaths. Traditional methods for cancer detection often have limitations in identifying the disease in its early stages, and they can be expensive and time-consuming. Since cancer typically lacks symptoms and is often only detected at advanced stages, it is crucial to use affordable technologies that can provide quick results at the point of care for early diagnosis. Biosensors that target specific biomarkers associated with different types of cancer offer an alternative diagnostic approach at the point of care. Recent advancements in manufacturing and design technologies have enabled the miniaturization and cost reduction of point-of-care devices, making them practical for diagnosing various cancer diseases. Furthermore, machine learning (ML) algorithms have been employed to analyze sensor data and extract valuable information through the use of statistical techniques. In this review paper, we provide details on how various machine learning algorithms contribute to the ongoing development of advanced data processing techniques for biosensors, which are continually emerging. We also provide information on the various technologies used in point-of-care cancer diagnostic biosensors, along with a comparison of the performance of different ML algorithms and sensing modalities in terms of classification accuracy.
Collapse
Affiliation(s)
| | | | | | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA; (M.K.); (M.N.T.); (D.S.)
| |
Collapse
|
5
|
Liao WC, Mukundan A, Sadiaza C, Tsao YM, Huang CW, Wang HC. Systematic meta-analysis of computer-aided detection to detect early esophageal cancer using hyperspectral imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:4383-4405. [PMID: 37799695 PMCID: PMC10549751 DOI: 10.1364/boe.492635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/07/2023]
Abstract
One of the leading causes of cancer deaths is esophageal cancer (EC) because identifying it in early stage is challenging. Computer-aided diagnosis (CAD) could detect the early stages of EC have been developed in recent years. Therefore, in this study, complete meta-analysis of selected studies that only uses hyperspectral imaging to detect EC is evaluated in terms of their diagnostic test accuracy (DTA). Eight studies are chosen based on the Quadas-2 tool results for systematic DTA analysis, and each of the methods developed in these studies is classified based on the nationality of the data, artificial intelligence, the type of image, the type of cancer detected, and the year of publishing. Deeks' funnel plot, forest plot, and accuracy charts were made. The methods studied in these articles show the automatic diagnosis of EC has a high accuracy, but external validation, which is a prerequisite for real-time clinical applications, is lacking.
Collapse
Affiliation(s)
- Wei-Chih Liao
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan
| | - Cleorita Sadiaza
- Department of Mechanical Engineering, Far Eastern University, P. Paredes St., Sampaloc, Manila, 1015, Philippines
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan
| | - Chien-Wei Huang
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st.Rd., Lingya District, Kaohsiung City 80284, Taiwan
- Department of Nursing, Tajen University, 20, Weixin Rd., Yanpu Township, Pingtung County 90741, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan
- Director of Technology Development, Hitspectra Intelligent Technology Co., Ltd., 4F., No. 2, Fuxing 4th Rd., Qianzhen Dist., Kaohsiung City 80661, Taiwan
| |
Collapse
|
6
|
Lino C, Barrias S, Chaves R, Adega F, Fernandes JR, Martins-Lopes P. Development of a QCM-based biosensor for the detection of non-small cell lung cancer biomarkers in liquid biopsies. Talanta 2023; 260:124624. [PMID: 37187027 DOI: 10.1016/j.talanta.2023.124624] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
Lung cancer is the main malignant cancer reported worldwide, with one of the lowest survival rates. Deletions in the Epidermal Growth Factor Receptor (EGFR) gene are often associated with non-small cell lung cancer (NSCLC), a common subtype of lung cancer. The detection of such mutations provides key information for the diagnosis and treatment of the disease; therefore, the early screening of such biomarkers is of vital importance. The need for fast, reliable, and early detection means applied to NSCLC has led to the development of highly sensitive devices that can detect cancer-associated mutations. Such devices, known as biosensors, are a promising alternative to more conventional detection methods and can potentially alter the way cancer is diagnosed and treated. In this study, we report the development of a DNA-based biosensor, namely a quartz crystal microbalance (QCM), applied to the detection of NSCLC, from liquid biopsies samples. The detection, as is the case of most DNA biosensors, is based on the hybridization between the NSCLC-specific probe and the sample DNA (containing specific mutations associated with NSCLC). The surface functionalization was performed with a blocking agent (dithiothreitol) and thiolated-ssDNA strands. The biosensor was able to detect specific DNA sequences in both synthetic and real samples. Aspects such as reutilization and regeneration of the QCM electrode were also studied.
Collapse
Affiliation(s)
- Catarina Lino
- DNA & RNA Sensing Lab, University of Trás-os-Montes e Alto Douro, Department of Genetics and Biotechnology, School of Life Science and Environment, Blocos Laboratoriais Bdg, 5000-801, Vila Real, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8 Bdg, 1749-016, Lisboa, Portugal
| | - Sara Barrias
- DNA & RNA Sensing Lab, University of Trás-os-Montes e Alto Douro, Department of Genetics and Biotechnology, School of Life Science and Environment, Blocos Laboratoriais Bdg, 5000-801, Vila Real, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8 Bdg, 1749-016, Lisboa, Portugal
| | - Raquel Chaves
- BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8 Bdg, 1749-016, Lisboa, Portugal; Cytogenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Filomena Adega
- BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8 Bdg, 1749-016, Lisboa, Portugal; Cytogenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - José Ramiro Fernandes
- Chemical Centre - Vila Real (CQVR), Physics Department, School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Paula Martins-Lopes
- DNA & RNA Sensing Lab, University of Trás-os-Montes e Alto Douro, Department of Genetics and Biotechnology, School of Life Science and Environment, Blocos Laboratoriais Bdg, 5000-801, Vila Real, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8 Bdg, 1749-016, Lisboa, Portugal.
| |
Collapse
|
7
|
Thong LT, Chou HS, Chew HSJ, Lau Y. Diagnostic test accuracy of artificial intelligence-based imaging for lung cancer screening: A systematic review and meta-analysis. Lung Cancer 2023; 176:4-13. [PMID: 36566582 DOI: 10.1016/j.lungcan.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lung cancer is the principal cause of cancer-related deaths worldwide. Early detection of lung cancer with screening is indispensable to reduce the high morbidity and mortality rates. Artificial intelligence (AI) is widely utilised in healthcare, including in the assessment of medical images. A growing number of reviews studied the application of AI in lung cancer screening, but no overarching meta-analysis has examined the diagnostic test accuracy (DTA) of AI-based imaging for lung cancer screening. OBJECTIVE To systematically review the DTA of AI-based imaging for lung cancer screening. METHODS PubMed, EMBASE, Cochrane Library, CINAHL, IEEE Xplore, Web of Science, ACM Digital Library, Scopus, PsycINFO, and ProQuest Dissertations and Theses were searched from inception to date. Studies that were published in English and that evaluated the performance of AI-based imaging for lung cancer screening were included. Two independent reviewers screened titles and abstracts and used the Quality Assessment of Diagnostic Accuracy Studies-2 tool to appraise the quality of selected studies. Grading of Recommendations Assessment, Development, and Evaluation to diagnostic tests was used to assess the certainty of evidence. RESULTS Twenty-six studies with 150,721 imaging data were included. Hierarchical summary receiver-operating characteristic model used for meta-analysis demonstrated that the pooled sensitivity for AI-based imaging for lung cancer screening was 94.6 % (95 % CI: 91.4 % to 96.7 %) and specificity was 93.6 % (95 % CI: 88.5 % to 96.6 %). Subgroup analyses revealed that similar results were found among different types of AI, region, data source, and year of publication, but the overall quality of evidence was very low. CONCLUSION AI-based imaging could effectively detect lung cancer and be incorporated into lung cancer screening programs. Further high-quality DTA studies on large lung cancer screening populations are required to validate AI's role in early lung cancer detection.
Collapse
Affiliation(s)
- Lay Teng Thong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Hui Shan Chou
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Han Shi Jocelyn Chew
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Ying Lau
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Sun P, Niu K, Du H, Li R, Chen J, Lu X. Sensitive Electrochemical Biosensor for Rapid Screening of Tumor Biomarker TP53 Gene Mutation Hotspot. BIOSENSORS 2022; 12:658. [PMID: 36005054 PMCID: PMC9406039 DOI: 10.3390/bios12080658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Rapid and sensitive detection of cancer biomarkers is crucial for cancer screening, early detection, and improving patient survival rate. The present study proposes an electrochemical gene-sensor capable of detecting tumor related TP53 gene mutation hotspots by self-assembly of sulfhydryl ended hairpin DNA probes tagged with methylene blue (MB) onto a gold electrode. By performing a hybridization reaction with the target DNA sequence, the gene-sensor can rearrange the probe's structure, resulting in significant electrochemical signal differences by differential pulse voltammetry. When the DNA biosensor is hybridized with 1 μM target DNA, the peak current response signal can decrease more than 60%, displaying high sensitivity and specificity for the TP53 gene. The biosensor achieved rapid and sensitive detection of the TP53 gene with a detection limit of 10 nmol L-1, and showed good specific recognition ability for single nucleotide polymorphism (SNP) and base sequence mismatches in the TP53 gene affecting residue 248 of the P53 protein. Moreover, the biosensor demonstrated good reproducibility, repeatability, operational stability, and anti-interference ability for target DNA molecule in the complex system of 50% fetal bovine serum. The proposed biosensor provides a powerful tool for the sensitive and specific detection of TP53 gene mutation hotspot sequences and could be used in clinical samples for early diagnosis and detection of cancer.
Collapse
Affiliation(s)
- Pengcheng Sun
- College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian 116600, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kai Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haiying Du
- College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian 116600, China
| | - Ruixin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
10
|
Sohrabi H, Bolandi N, Hemmati A, Eyvazi S, Ghasemzadeh S, Baradaran B, Oroojalian F, Reza Majidi M, de la Guardia M, Mokhtarzadeh A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Application of Particle Swarm Optimization with Simulated Annealing in MIT Regularization Image Reconstruction. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background and Objectives: Due to the soft-field effect of the electromagnetic field and the limit of detection, image reconstruction of magnetic induction tomography has to recover more complex electrical characteristics from very few signals. These cause a problem which have underdetermination, nonlinearity, and ill-posed characteristics, and therefore lead to many difficulties in finding its solution. Although many regularization image reconstruction methods exist, they are not suitable for MIT applications due to regularization parameter selection. The purpose of this paper is to study the principle of particle swarm optimization with simulated annealing, and to propose a regularization method for reconstruction, which will provide a new way to solve the MIT image problems. Methods and Models: Firstly, the regularization principle of image reconstruction of MIT will be analyzed. Then the hybrid regularization algorithm, including Tikhonov and NOSER regularization, will be developed, using the dimension of the Hessian matrix as a penalty term respecting the prior knowledge. PSO-SA algorithm will be applied to obtain an optimal solution for regularization parameters. Finally, six typical numerical models and approximately symmetrical cerebral hemorrhage models by COMSOL will be carried out, and the voltage signals obtained from the simulation will be used to verify the proposed reconstruction method. Results: Through the simulation results, the proposed imaging method has the average CC values of 0.9932, 0.8286 and the average RE values of 0.4982, 0.8320 for simple and complex models, respectively. Moreover, when the SNR changes from 55dB to 35dB, the CC value of the cerebral hemorrhage model reduced by 0.1034. The results demonstrate the effectiveness and high theoretical feasibility of the proposed method in MIT image reconstruction. Conclusions: This study indicates the potential application of PSO-SA algorithm in regularization imaging problem. Compared with traditional regularization imaging methods, the proposed method has the advantages of better accuracy, robustness and noise resistance, showing the certain application value in other similar ill-ness imaging problems.
Collapse
|
12
|
Xia YM, Xia M, Zhao Y, Li MY, Ou X, Gao WW. Photocatalytic electrochemical sensor based on three-dimensional graphene nanocomposites for the ultrasensitive detection of CYFRA21-1 gene. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Abdollahiyan P, Mohammadzadeh A, Hasanzadeh M. Chemical binding of molecular-imprinted polymer to biotinilated antibody: Utilization of molecular imprinting polymer as intelligent synthetic biomaterials toward recognition of carcinoma embryonic antigen in human plasma sample. J Mol Recognit 2021; 34:e2897. [PMID: 33759263 DOI: 10.1002/jmr.2897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
In this study, a novel biosensor based on molecular imprinting polymer (MIP) methodology was fabricated toward recognition of carcinoembryonic antigen (CEA). For this purpose, poly (toluidine blue) (PTB) was electropolymerized on the surface of gold electrode in the absence and presence of CEA. So, the target molecules were entrapped into the imprinted specific cavities of MIP. Obtained results show that, the binding affinity of the MIP system was significantly higher than that of revealed for the nonimprinted polymer (NIP) system, MIP-based biosensor revealed linear response from (0.005 to 75 μg/L) and low limit of quantification of (0.005 μg/L) by using chronoamperometry technique, leading to CEA monitoring in real and clinical samples. Thus, a novel technique for rapid, simple, sensitive and affordable monitoring of CEA (LLOQ = 0.005 μg/L) has provided through developed biosensor. From a future perspective, moreover, this method can be considered as an applicable candidate in biomedical and clinical analysis for point-of-care usages.
Collapse
Affiliation(s)
- Parinaz Abdollahiyan
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Mohammadzadeh
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Wang L, Jiang J, Li X, Li K, He R, Li J, Duan L, Luo W, Hu Z, Luo D. Improved EGFR mutation detection sensitivity after enrichment by Cas9/sgRNA digestion and PCR amplification. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1316-1324. [PMID: 33216845 DOI: 10.1093/abbs/gmaa123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
The detection of circulating tumor DNA is important in cancer research and clinical practice. In the present study, we aimed to improve the sensitivity of downstream mutation detection of next-generation sequencing using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system to selectively target wild-type fragments but with low or no cleavage activity to mutant fragments, followed by amplification using polymerase chain reaction. We selected different mutant sites of epidermal growth factor receptor gene (EGFR)-exon19 deletions in patients with lung cancer and constructed mixed templates of mutant and wild-type DNA comprising ratios of 10% to 0.01% to test the effectiveness of the enrichment method. The results showed that after CRISPR/Cas9 enrichment, a low concentration of mutant DNA fragments (0.01%) could be detected by Sanger sequencing, which represented a 1000-fold increase compared with the untreated samples. We further verified the feasibility of the introduced method and obtained similar results in clinical samples from patients with non-small cell lung cancer, indicating that this method has the potential to detect low copy number mutations at the early stage.
Collapse
Affiliation(s)
- Li Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Jing Jiang
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Xiangning Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Kai Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
- Genetalks Bio-tech (Changsha) Limited Liability Company, Changsha 410013, China
| | - Rongzhang He
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Jia Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Lili Duan
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Weihao Luo
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Zheng Hu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Dixian Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| |
Collapse
|
15
|
Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers. Anal Bioanal Chem 2020; 412:7851-7860. [PMID: 32935151 DOI: 10.1007/s00216-020-02916-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
In the present study, a sensitive electrochemical aptamer-based biosensing strategy for human non-small cell lung cancer (NSCLC) detection was proposed using nanofiber-modified disposable pencil graphite electrodes (PGEs). The composite nanofiber was comprised of polyacrylonitrile (PAN) and polypyrrole (PPy) polymers, and fabrication of the nanofibers was accomplished using electrospinning process onto PGEs. Development of the nanofibers was confirmed using scanning electron microscopy (SEM). The high-affinity 5'-aminohexyl-linked aptamer was immobilized onto a PAN/PPy composite nanofiber-modified sensor surface via covalent bonding strategy. After incubation with NSCLC living cells (A549 cell line) at 37.5 °C, the recognition between aptamer and target cells was monitored by electrochemical impedance spectroscopy (EIS). The selectivity of the aptasensor was evaluated using nonspecific human cervical cancer cells (HeLa) and a nonspecific aptamer sequence. The proposed electrochemical aptasensor showed high sensitivity toward A549 cells with a detection limit of 1.2 × 103 cells/mL. The results indicate that our label-free electrochemical aptasensor has great potential in the design of aptasensors for the diagnostics of other types of cancer cells with broad detection capability in clinical analysis. Graphical abstract.
Collapse
|
16
|
Emerging role of phytochemicals in targeting predictive, prognostic, and diagnostic biomarkers of lung cancer. Food Chem Toxicol 2020; 144:111592. [PMID: 32702507 DOI: 10.1016/j.fct.2020.111592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Lung-cancer is the foremost cause of cancer in humans worldwide, of which 80-85% cases are composed of non-small cell lung carcinoma. All treatment decisions depend on the pattern of biomarkers selection to enhance the response to the targeted therapies. Although advanced treatments are available for lung-cancer, the disease treatment remains not adequate. There are several synthetic chemotherapeutic agents available for the treatment of lung cancer. However, due to their toxic effect, survival rate is still 15-18%. Besides, medicinal plants are a huge reservoir of natural products that provide protective effects against lung cancer. Likewise, successful studies of potential phytochemicals in targeting lung-cancer biomarkers have created a novel paradigm for the discovery of potent drugs against lung-cancer. Hence, to defeat severe toxicity and resistance towards the synthetic drugs, detailed studies are required regarding the available phytochemicals and targets responsible for the treatment of lung-cancer. The present review provides a comprehensive information about the lung-cancer biomarkers under the classification of predictive, prognostic, and diagnostic type. Moreover, it discusses and enlists the phytochemicals with mode of action against different biomarkers, effective doses in in vitro, in vivo, and clinical studies, the limitations associated with usage of phytochemicals as a drug to prevent/cure lung-cancer and the latest techniques employed to overcome such issues.
Collapse
|
17
|
An electrochemical CD59 targeted noninvasive immunosensor based on graphene oxide nanoparticles embodied pencil graphite for detection of lung cancer. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Zhang Y, Shen X, Li W, Long Z, Ouyang J, Na N. Multi-Dimensionally Extended Functionalization Innovates to an Entropy-Driven Detection of Multi-miRNAs for One-Step Cancer Screening and Diagnosis in Living Cells. Anal Chem 2020; 92:8125-8132. [PMID: 32380833 DOI: 10.1021/acs.analchem.0c00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Compared with tedious multi-step detections, multi-functional nanoprobes are effective for one-step screening and diagnosis of cancers by multi-detection of microRNAs (miRNAs). However, limited probe density, spatial mutual interference, and low target-triggered hybridization efficiency of nanoprobes will hinder intracellular applications. Here, for obtaining high loading density but low spatial mutual interference between functional biomolecules on nanoprobes, an extended biofunctionalization in three dimensions (the two-dimensional surface and a special "height" direction) is designed. Therefore, a multi-functional probe is constructed for one-step detection of multi-miRNAs for cancer screening and diagnosis. With linker-bridged multiple single-stranded DNAs swung out rigidly, multi-dimensionally extended upconversion nanorods (ME-UCNRs) covered by chitosan are constructed to load and deliver multiple biomolecules into living cells. Escaping from endolysosomes, ME-UCNRs maintain good biological activities of functionalized DNAs for effective detection of multi-miRNAs in living cells. Thereby, with multiple targets of miRNAs, toehold-mediated entropy-driven strand displacements are employed to give respectively changed fluorescent signals via fluorescence resonance energy transfer. Thus, a universal cancer biomarker of miR-21 and two specific liver-cancer biomarkers (miR-199a and miR-224) are efficiently detected through a one-step detection. By discriminating cancer cells from normal ones and determining liver-cancer cells simultaneously, this work innovates an efficient and definite one-step strategy for fast screening and early cancer diagnosis.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaotong Shen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weixiang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zi Long
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
Hu K, Cheng J, Li J, Ye S, Yang H, Liu Y, Kong J. Perfluorosulfonic acid polymer based eATRP for ultrasensitive detection of CYFRA21-1 DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2827-2834. [PMID: 32930205 DOI: 10.1039/d0ay00328j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sensitive detection of biomarker cytokeratin fragment antigen 21-1 (CYFRA21-1) is crucial for early diagnosis and screening of non-small cell lung cancer (NSCLC). In this work, an electrochemical biosensor based on Nafion-initiated eATRP has been built for ultrasensitive detection of CYFRA21-1 DNA for the first time. Specifically, peptide nucleic acid (PNA) probes are immobilized onto a gold electrode surface and then hybridized with target DNA to form PNA/DNA heteroduplexes for the subsequent attachment of Nafion by the identified carboxyl-Zr4+-phosphoric acid chemistry. Finally, polymer chains are obtained by linking the monomer of ferrocenylmethyl methacrylate to the PNA/MCH/DNA/Zr4+/Nafion probes via eATRP. Under optimized steady-state conditions, the sensor offers a wide current response for CYFRA21-1 DNA from 10-11 to 10-16 M with a detection limit of 6.42 × 10-17 M. The proposed method of using Nafion as the eATRP initiator exhibits high sensitivity, reproducibility and stability and is a promising strategy for early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Kai Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Jiamin Cheng
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Jinge Li
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Shan Ye
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Huaixia Yang
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Yanju Liu
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
20
|
Takke A, Shende P. Non-invasive Biodiversified Sensors: A Modernized Screening Technology for Cancer. Curr Pharm Des 2019; 25:4108-4120. [DOI: 10.2174/1381612825666191022162232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Background:
Biological sensors revolutionize the method of diagnoses of diseases from early to final
stages using the biomarkers present in the body. Biosensors are advantageous due to the involvement of minimal
sample collection with improved specificity and sensitivity for the detection of biomarkers.
Methods:
Conventional biopsies restrict problems like patient non-compliance, cross-infection and high cost and to
overcome these issues biological samples like saliva, sweat, urine, tears and sputum progress into clinical and diagnostic
research for the development of non-invasive biosensors. This article covers various non-invasive measurements
of biological samples, optical-based, mass-based, wearable and smartphone-based biosensors for the detection
of cancer.
Results:
The demand for non-invasive, rapid and economic analysis techniques escalated due to the modernization
of the introduction of self-diagnostics and miniature forms of devices. Biosensors have high sensitivity and
specificity for whole cells, microorganisms, enzymes, antibodies, and genetic materials.
Conclusion:
Biosensors provide a reliable early diagnosis of cancer, which results in faster therapeutic outcomes
with in-depth fundamental understanding of the disease progression.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
21
|
Wang L. Correction: Screening and Biosensor-Based Approaches for Lung Cancer Detection. Sensors 2017, 17, 2420. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19204393. [PMID: 31614471 PMCID: PMC6832796 DOI: 10.3390/s19204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
The authors wish to make the following corrections to this paper [...].
Collapse
Affiliation(s)
- Lulu Wang
- School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China.
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland 1142, New Zealand.
| |
Collapse
|
22
|
Zhang J, Liu Q, Ba Y, Cheng J, Yang H, Cui Y, Kong J, Zhang X. F-containing initiatior for ultrasensitive fluorescent detection of lung cancer DNA via atom transfer radical polymerization. Anal Chim Acta 2019; 1094:99-105. [PMID: 31761052 DOI: 10.1016/j.aca.2019.09.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 11/28/2022]
Abstract
An ultrasensitive fluorescence method for early diagnosis of lung cancer via Nafion-initiated atom transfer radical polymerization (ATRP) is reported, in this paper. In the proposed method, thiolated peptide nucleic acid (PNA) is modified to amino magnetic beads (MBs) via a cross-linking agent to specifically capture target DNA (tDNA), and the initiator (Nafion) of ATRP is attached to PNA/DNA heteroduplexes based on the phosphate groups of the tDNA and sulfonate groups of Nafion via phosphate-Zr4+-sulfonate chemistry. Nafion as a macroinitiator of ATRP possesses multiple C-F active sites to initiate polymerization, and numerous polymeric chains that significantly amplify the fluorescent signal are formed. Under optimal conditions, a good linear relationship is obtained in the range of 0.1 nM-0.1 fM with correlation coefficients of 0.9975, and the detection limit is as low as 35.5 aM (∼214 molecules). The proposed strategy has several advantages of simplicity, cost-effectiveness, selectivity and sensitivity. More importantly, the anti-interference results demonstrate that the proposed Nafion-initiated ATRP strategy has great potential in bioanalytical applications.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450008, PR China
| | - Qianrui Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450008, PR China
| | - Jiamin Cheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450008, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450008, PR China.
| | - Ying Cui
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450008, PR China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
23
|
PtCu nanoprobe-initiated cascade reaction modulated iodide-responsive sensing interface for improved electrochemical immunosensor of neuron-specific enolase. Biosens Bioelectron 2019; 143:111612. [DOI: 10.1016/j.bios.2019.111612] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022]
|
24
|
Recent advances in biosensor for detection of lung cancer biomarkers. Biosens Bioelectron 2019; 141:111416. [DOI: 10.1016/j.bios.2019.111416] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
|
25
|
Sameiyan E, Bagheri E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. DNA origami-based aptasensors. Biosens Bioelectron 2019; 143:111662. [PMID: 31491726 DOI: 10.1016/j.bios.2019.111662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Traditional analytical techniques face many limitations such as time-consuming process, complicated sample preparation, high consumption of reagents and need for expensive equipment. So, it is important that simple, rapid and sensitive detection methods are introduced. Nucleic acids-based assays, particularly aptamers, have a great impact on modern life sciences for biological analysis and target detection. Aptamer-based biosensors with unique recognition properties including high specificity and affinity, rapid response and simple fabrication have attracted much attention. It is believed that two- and three-dimensional structures, sometimes referred to as DNA origami, using DNA aptamers can show more selective binding affinity and better stability over other nucleic acids forms. In this review, we will focus on recent advances in the development and uses of electrochemical and optical DNA origami-based aptasensors to supply readers with a comprehensive understanding of their improvements. Also, the challenges and awards of these approaches are discussed.
Collapse
Affiliation(s)
- Elham Sameiyan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Bagheri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Multi-Class Neural Networks to Predict Lung Cancer. J Med Syst 2019; 43:211. [DOI: 10.1007/s10916-019-1355-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/20/2019] [Indexed: 01/27/2023]
|
27
|
Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. J Control Release 2019; 295:250-267. [DOI: 10.1016/j.jconrel.2019.01.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/22/2022]
|
28
|
Sheng M, Dong Z, Xie Y. Identification of tumor-educated platelet biomarkers of non-small-cell lung cancer. Onco Targets Ther 2018; 11:8143-8151. [PMID: 30532555 PMCID: PMC6241732 DOI: 10.2147/ott.s177384] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Lung cancer is a severe cancer with a high death rate. The 5-year survival rate for stage III lung cancer is much lower than stage I. Early detection and intervention of lung cancer patients can significantly increase their survival time. However, conventional lung cancer-screening methods, such as chest X-rays, sputum cytology, positron-emission tomography (PET), low-dose computed tomography (CT), magnetic resonance imaging, and gene-mutation, -methylation, and -expression biomarkers of lung tissue, are invasive, radiational, or expensive. Liquid biopsy is non-invasive and does little harm to the body. It can reflect early-stage dysfunctions of tumorigenesis and enable early detection and intervention. METHODS In this study, we analyzed RNA-sequencing data of tumor-educated platelets (TEPs) in 402 non-small-cell lung cancer (NSCLC) patients and 231 healthy controls. A total of 48 biomarker genes were selected with advanced minimal-redundancy, maximal-relevance, and incremental feature-selection (IFS) methods. RESULTS A support vector-machine (SVM) classifier based on the 48 biomarker genes accurately predicted NSCLC with leave-one-out cross-validation (LOOCV) sensitivity, specificity, accuracy, and Matthews correlation coefficients of 0.925, 0.827, 0.889, and 0.760, respectively. Network analysis of the 48 genes revealed that the WASF1 actin cytoskeleton module, PRKAB2 kinase module, RSRC1 ribosomal protein module, PDHB carbohydrate-metabolism module, and three intermodule hubs (TPM2, MYL9, and PPP1R12C) may play important roles in NSCLC tumorigenesis and progression. CONCLUSION The 48-gene TEP liquid-biopsy biomarkers will facilitate early screening of NSCLC and prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Meiling Sheng
- Department of Respiration, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China
| | - Zhaohui Dong
- Department of Intensive Care Unit, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, China
| | - Yanping Xie
- Department of Respiratory Medicine, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, China,
| |
Collapse
|
29
|
Roointan A, Ahmad Mir T, Ibrahim Wani S, Mati-Ur-Rehman, Hussain KK, Ahmed B, Abrahim S, Savardashtaki A, Gandomani G, Gandomani M, Chinnappan R, Akhtar MH. Early detection of lung cancer biomarkers through biosensor technology: A review. J Pharm Biomed Anal 2018; 164:93-103. [PMID: 30366148 DOI: 10.1016/j.jpba.2018.10.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023]
Abstract
Lung cancer is undoubtedly one of the most serious health issues of the 21 st century. It is the second leading cause of cancer-related deaths in both men and women worldwide, accounting for about 1.5 million deaths annually. Despite advances in the treatment of lung cancer with new pharmaceutical products and technological improvements, morbidity and mortality rates remains a significant challenge for the cancer biologists and oncologists. The vast majority of lung cancer patients present with advanced-stage of pathological process that ultimately leads to poor prognosis and a five-year survival rate less than 20%. Early and accurate screening and analysis using cost-effective means are urgently needed to effectively diagnose the disease, improve the survival rate or to reduce mortality and morbidity associated with lung cancer patients. Thus, the only hope for early recognition of risk factors and timely diagnosis and treatment of lung cancer is biosensors technology. Novel biosensing based diagnostics approaches for predicting metastatic risks are likely to have significant therapeutic and clinical impact in the near future. This article systematically provides a brief overview of various biosensing platforms for identification of lung cancer disease biomarkers, with a specific focus on recent advancements in electrochemical and optical biosensors, analytical performances of different biosensors, challenges and further research opportunities for routine clinical analysis.
Collapse
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tanveer Ahmad Mir
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan; Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea; Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia; Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan.
| | - Shadil Ibrahim Wani
- Department of Immunology and Molecular Medicine,Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Mati-Ur-Rehman
- Department of Radiological Sciences, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea; Department of pharmacy, University of central Punjab 1-Khayaban-e-Jinnah, Johar Town, Lahore, Pakistan
| | - Bilal Ahmed
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Shugufta Abrahim
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Amir Savardashtaki
- Department of Environmental Sciences, Cyprus International University, Nicosia, Cyprus
| | - Ghazaal Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus International University, Nicosia, Cyprus
| | - Molood Gandomani
- Department of pharmacy, University of central Punjab 1-Khayaban-e-Jinnah, Johar Town, Lahore, Pakistan
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Mahmood H Akhtar
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea
| |
Collapse
|