1
|
Ullah S, Chen H, Guo P, Song M, Zhang S, Hu L, Li S. A Highly Sensitive D-Shaped PCF-SPR Sensor for Refractive Index and Temperature Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5582. [PMID: 39275493 PMCID: PMC11397999 DOI: 10.3390/s24175582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
A novel highly sensitive D-shaped photonic crystal fiber-based surface plasmon resonance (PCF-SPR) sensor for dual parameters of refractive index and temperature detecting is proposed. A PCF cladding polishing provides a D-shape design with a gold (Au) film coating for refractive index (RI) sensing (Core 1) and a composite film of silver (Ag) and polydimethylsiloxane (PDMS) for temperature sensing (Core 2). Comsol Multiphysics 5.5 is used to design and simulate the proposed sensor by the finite element method (FEM). The proposed sensor numerically provides results with maximum wavelength sensitivities (WSs) of 51,200 and 56,700 nm/RIU for Core 1 and 2 as RI sensing while amplitude sensitivities are -98.9 and -147.6 RIU-1 with spectral resolution of 1.95 × 10-6 and 1.76 × 10-6 RIU, respectively. Notably, wavelength sensitivity of 17.4 nm/°C is obtained between -20 and -10 °C with resolution of 5.74 × 10-3 °C for Core 2 as temperature sensing. This sensor can efficiently work in the analyte and temperature ranges of 1.33-1.43 RI and -20-100 °C. Due to its high sensitivity and wide detection ranges, both in T and RI sensing, it is a promising candidate for a variety of applications, including chemical, medical, and environmental detection.
Collapse
Affiliation(s)
- Sajid Ullah
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Hailiang Chen
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Pengxiao Guo
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Mingshi Song
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Sa Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Linchuan Hu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Shuguang Li
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
2
|
Tavoletta I, Arcadio F, Renzullo LP, Oliva G, Del Prete D, Verolla D, Marzano C, Alberti G, Pesavento M, Zeni L, Cennamo N. Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer. SENSORS (BASEL, SWITZERLAND) 2024; 24:3928. [PMID: 38931712 PMCID: PMC11207874 DOI: 10.3390/s24123928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
An optical-chemical sensor based on two modified plastic optical fibers (POFs) and a molecularly imprinted polymer (MIP) is realized and tested for the detection of 2-furaldehyde (2-FAL). The 2-FAL measurement is a scientific topic of great interest in different application fields, such as human health and life status monitoring in power transformers. The proposed sensor is realized by using two POFs as segmented waveguides (SW) coupled through a micro-trench milled between the fibers and then filled with a specific MIP for the 2-FAL detection. The experimental results show that the developed intensity-based sensor system is highly selective and sensitive to 2-FAL detection in aqueous solutions, with a limit of detection of about 0.04 mg L-1. The proposed sensing approach is simple and low-cost, and it shows performance comparable to that of plasmonic MIP-based sensors present in the literature for 2-FAL detection.
Collapse
Affiliation(s)
- Ines Tavoletta
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Luca Pasquale Renzullo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Giuseppe Oliva
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Domenico Del Prete
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Debora Verolla
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Chiara Marzano
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.A.); (M.P.)
| | - Maria Pesavento
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.A.); (M.P.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| |
Collapse
|
3
|
Yang C, Wang Z, Xiao K, Ushakov N, Kumar S, Li X, Min R. Portable optical fiber biosensors integrated with smartphone: technologies, applications, and challenges [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1630-1650. [PMID: 38495719 PMCID: PMC10942678 DOI: 10.1364/boe.517534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024]
Abstract
The increasing demand for individualized health monitoring and diagnostics has prompted considerable research into the integration of portable optical fiber biosensors integrated with smartphones. By capitalizing on the benefits offered by optical fibers, these biosensors enable qualitative and quantitative biosensing across a wide range of applications. The integration of these sensors with smartphones, which possess advanced computational power and versatile sensing capabilities, addresses the increasing need for portable and rapid sensing solutions. This extensive evaluation thoroughly examines the domain of optical fiber biosensors in conjunction with smartphones, including hardware complexities, sensing approaches, and integration methods. Additionally, it explores a wide range of applications, including physiological and chemical biosensing. Furthermore, the review provides an analysis of the challenges that have been identified in this rapidly evolving area of research and concludes with relevant suggestions for the progression of the field.
Collapse
Affiliation(s)
- Chengwei Yang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Zhuo Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Kun Xiao
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Nikolai Ushakov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Santosh Kumar
- Department of Electronics and Communication Engineering, K L Deemed to be University, Guntur, Andhra Pradesh 522302, India
| | - Xiaoli Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, China
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
4
|
Arcadio F, Marzano C, Del Prete D, Zeni L, Cennamo N. Analysis of Plasmonic Sensors Performance Realized by Exploiting Different UV-Cured Optical Adhesives Combined with Plastic Optical Fibers. SENSORS (BASEL, SWITZERLAND) 2023; 23:6182. [PMID: 37448030 DOI: 10.3390/s23136182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Polymer-based surface plasmon resonance (SPR) sensors can be used to realize simple, small-size, disposable, and low-cost biosensors for application in several fields, e.g., healthcare. The performance of SPR sensors based on optical waveguides can be changed by tuning several parameters, such as the dimensions and the shape of the waveguides, the refractive index of the core, and the metal nanofilms used to excite the SPR phenomenon. In this work, in order to develop, experimentally test, and compare several polymer-based plasmonic sensors, realized by using waveguides with different core refractive indices, optical adhesives and 3D printed blocks with a trench inside have been used. In particular, the sensors are realized by filling the blocks' trenches (with two plastic optical fibers located at the end of these) with different UV-cured optical adhesives and then covering them with the same bilayer to excite the SPR phenomenon. The developed SPR sensors have been characterized by numerical and experimental results. Finally, in order to propose photonic solutions for healthcare, a comparative analysis has been reported to choose the best sensor configuration useful for developing low-cost biosensors.
Collapse
Affiliation(s)
- Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Chiara Marzano
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Del Prete
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
5
|
Shi X, Zhao W, Zhu Y, Shen C, Zeng X. Polarization-independent tilted fiber Bragg grating surface plasmon resonance sensor based on spectrum optimization. OPTICS LETTERS 2023; 48:3375-3378. [PMID: 37390134 DOI: 10.1364/ol.493937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023]
Abstract
We experimentally demonstrated polarization multiplexing schemes in a tilted fiber grating (TFBG) to achieve polarization-independent fiber-optic surface plasmon resonance (SPR) sensors. The first used two orthogonal polarized lights separated by a polarization beam splitter (PBS) that are p-polarized in polarization-maintaining fiber (PMF) and precisely aligned with the tilted grating plane, so as to achieve the transmission of p-polarized light in two opposite directions of the Au-coated TFBG to excite SPR. Alternatively, polarization multiplexing was also achieved by exploring two polarization components to achieve the SPR effect through a Faraday rotator mirror (FRM). The SPR reflection spectra are polarization-independent of the light source and any perturbations to fibers, which are explained by the superposition of p- and s-polarized transmission spectra in equal proportions. The spectrum optimization is presented to reduce the proportion of the s-polarization component. A polarization-independent TFBG-based SPR refractive index (RI) sensor with a wavelength sensitivity of 555.14 nm/RIU and an amplitude sensitivity of 1724.92 dB/RIU for small changes is obtained, exhibiting unique advantages of minimizing the polarization alterations by mechanical perturbations.
Collapse
|
6
|
Zhang H, Zhou X, Li X, Gong P, Zhang Y, Zhao Y. Recent Advancements of LSPR Fiber-Optic Biosensing: Combination Methods, Structure, and Prospects. BIOSENSORS 2023; 13:bios13030405. [PMID: 36979617 PMCID: PMC10046874 DOI: 10.3390/bios13030405] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/31/2023]
Abstract
Fiber-optic biosensors based on localized surface plasmon resonance (LSPR) have the advantages of great biocompatibility, label-free, strong stability, and real-time monitoring of various analytes. LSPR fiber-optic biosensors have attracted extensive research attention in the fields of environmental science, clinical medicine, disease diagnosis, and food safety. The latest development of LSPR fiber-optic biosensors in recent years has focused on the detection of clinical disease markers and the detection of various toxic substances in the environment and the progress of new sensitization mechanisms in LSPR fiber-optic sensors. Therefore, this paper reviews the LSPR fiber-optic sensors from the aspects of working principle, structure, and application fields in biosensors. According to the structure, the sensor can be divided into three categories: traditional ordinary optical fiber, special shape optical fiber, and specialty optical fiber. The advantages and disadvantages of existing and future LSPR fiber-optic biosensors are discussed in detail. Additionally, the prospect of future development of fiber-optic biosensors based on LSPR is addressed.
Collapse
Affiliation(s)
- Hongxin Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xue Zhou
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xuegang Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- The State Key Laboratory of Synthetical Automation for Process Industries, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Pengqi Gong
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- The State Key Laboratory of Synthetical Automation for Process Industries, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Yanan Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- The State Key Laboratory of Synthetical Automation for Process Industries, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Yong Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- The State Key Laboratory of Synthetical Automation for Process Industries, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| |
Collapse
|
7
|
Wang Z, Zhang W, Liu X, Li M, Lang X, Singh R, Marques C, Zhang B, Kumar S. Novel Optical Fiber-Based Structures for Plasmonics Sensors. BIOSENSORS 2022; 12:1016. [PMID: 36421134 PMCID: PMC9688463 DOI: 10.3390/bios12111016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Optical fiber sensors based on surface plasma technology have many unique advantages in specific applications such as extreme environmental monitoring, physical parameter determination, and biomedical indicators testing. In recent decades, various kinds of fiber probes with special structures were developed according to special processing such as tapering, splicing, etching, fiber balls, grating etc. In this paper, the fabrication technology, characteristics, development status and application scenarios of different special optical fiber structures are briefly reviewed, including common processing equipment. Furthermore, many special novel optical fiber structures reported in recent years are summarized, which have been used in various kinds of plasmonic sensing work. Then, the fiber-plasmonic sensors for practical applications are also introduced and examined in detail. The main aim of this review is to provide guidance and inspiration for researchers to design and fabricate special optical fiber structures, thus facilitating their further research.
Collapse
Affiliation(s)
- Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xianzheng Lang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Carlos Marques
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
8
|
Kalyoncu C, Yasli A, Ademgil H. Machine learning methods for estimating bent photonic crystal fiber based SPR sensor properties. Heliyon 2022; 8:e11582. [DOI: 10.1016/j.heliyon.2022.e11582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
|
9
|
Hussain M, Zou J, Zhang H, Zhang R, Chen Z, Tang Y. Recent Progress in Spectroscopic Methods for the Detection of Foodborne Pathogenic Bacteria. BIOSENSORS 2022; 12:bios12100869. [PMID: 36291007 PMCID: PMC9599795 DOI: 10.3390/bios12100869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 05/06/2023]
Abstract
Detection of foodborne pathogens at an early stage is very important to control food quality and improve medical response. Rapid detection of foodborne pathogens with high sensitivity and specificity is becoming an urgent requirement in health safety, medical diagnostics, environmental safety, and controlling food quality. Despite the existing bacterial detection methods being reliable and widely used, these methods are time-consuming, expensive, and cumbersome. Therefore, researchers are trying to find new methods by integrating spectroscopy techniques with artificial intelligence and advanced materials. Within this progress report, advances in the detection of foodborne pathogens using spectroscopy techniques are discussed. This paper presents an overview of the progress and application of spectroscopy techniques for the detection of foodborne pathogens, particularly new trends in the past few years, including surface-enhanced Raman spectroscopy, surface plasmon resonance, fluorescence spectroscopy, multiangle laser light scattering, and imaging analysis. In addition, the applications of artificial intelligence, microfluidics, smartphone-based techniques, and advanced materials related to spectroscopy for the detection of bacterial pathogens are discussed. Finally, we conclude and discuss possible research prospects in aspects of spectroscopy techniques for the identification and classification of pathogens.
Collapse
Affiliation(s)
- Mubashir Hussain
- School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
- Postdoctoral Innovation Practice, Shenzhen Polytechnic, Liuxian Avenue, Nanshan District, Shenzhen 518055, China
| | - Jun Zou
- School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
- Correspondence: (Z.J.); (T.Y.)
| | - He Zhang
- School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Ru Zhang
- School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yongjun Tang
- Postdoctoral Innovation Practice, Shenzhen Polytechnic, Liuxian Avenue, Nanshan District, Shenzhen 518055, China
- Correspondence: (Z.J.); (T.Y.)
| |
Collapse
|
10
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
11
|
Rahman BMA, Viphavakit C, Chitaree R, Ghosh S, Pathak AK, Verma S, Sakda N. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. BIOSENSORS 2022; 12:bios12010042. [PMID: 35049670 PMCID: PMC8773603 DOI: 10.3390/bios12010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 05/22/2023]
Abstract
The increasing use of nanomaterials and scalable, high-yield nanofabrication process are revolutionizing the development of novel biosensors. Over the past decades, researches on nanotechnology-mediated biosensing have been on the forefront due to their potential application in healthcare, pharmaceutical, cell diagnosis, drug delivery, and water and air quality monitoring. The advancement of nanoscale science relies on a better understanding of theory, manufacturing and fabrication practices, and the application specific methods. The topology and tunable properties of nanoparticles, a part of nanoscale science, can be changed by different manufacturing processes, which separate them from their bulk counterparts. In the recent past, different nanostructures, such as nanosphere, nanorods, nanofiber, core-shell nanoparticles, nanotubes, and thin films, have been exploited to enhance the detectability of labelled or label-free biological molecules with a high accuracy. Furthermore, these engineered-materials-associated transducing devices, e.g., optical waveguides and metasurface-based scattering media, widened the horizon of biosensors over a broad wavelength range from deep-ultraviolet to far-infrared. This review provides a comprehensive overview of the major scientific achievements in nano-biosensors based on optical fiber, nanomaterials and terahertz-domain metasurface-based refractometric, labelled and label-free nano-biosensors.
Collapse
Affiliation(s)
- B. M. Azizur Rahman
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Correspondence:
| | - Charusluk Viphavakit
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Ratchapak Chitaree
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Souvik Ghosh
- Department of Electronic and Electrical Engineering, University College London, Gower St., London WC1E 6AE, UK;
| | - Akhilesh Kumar Pathak
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Sneha Verma
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
| | - Natsima Sakda
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
12
|
Wen HY, Weng YQ, Chen RY, Hsu HC, Yeh YT, Chiang CC. A double helix-shaped optical fiber sensor for non-endoscopic diagnosis of gastrin-17. Analyst 2022; 147:4562-4569. [DOI: 10.1039/d2an00726f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-endoscopic tools for the diagnostic evaluation of patients should be promoted in the field of biomedical assay and the need for highly sensitive, efficient, low-cost, and user-friendly sensors must be considered.
Collapse
Affiliation(s)
- Hsin-Yi Wen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan, Republic of China
| | - Yu-Qiao Weng
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan, Republic of China
| | - Rou-Yu Chen
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan, Republic of China
| | - Hsiang-Cheng Hsu
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan, Republic of China
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan, Republic of China
| | - Chia-Chin Chiang
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan, Republic of China
| |
Collapse
|
13
|
Soares MS, Vidal M, Santos NF, Costa FM, Marques C, Pereira SO, Leitão C. Immunosensing Based on Optical Fiber Technology: Recent Advances. BIOSENSORS-BASEL 2021; 11:bios11090305. [PMID: 34562895 PMCID: PMC8472567 DOI: 10.3390/bios11090305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The evolution of optical fiber technology has revolutionized a variety of fields, from optical transmission to environmental monitoring and biomedicine, given their unique properties and versatility. For biosensing purposes, the light guided in the fiber core is exposed to the surrounding media where the analytes of interest are detected by different techniques, according to the optical fiber configuration and biofunctionalization strategy employed. These configurations differ in manufacturing complexity, cost and overall performance. The biofunctionalization strategies can be carried out directly on bare fibers or on coated fibers. The former relies on interactions between the evanescent wave (EW) of the fiber and the analyte of interest, whereas the latter can comprise plasmonic methods such as surface plasmon resonance (SPR) and localized SPR (LSPR), both originating from the interaction between light and metal surface electrons. This review presents the basics of optical fiber immunosensors for a broad audience as well as the more recent research trends on the topic. Several optical fiber configurations used for biosensing applications are highlighted, namely uncladded, U-shape, D-shape, tapered, end-face reflected, fiber gratings and special optical fibers, alongside practical application examples. Furthermore, EW, SPR, LSPR and biofunctionalization strategies, as well as the most recent advances and applications of immunosensors, are also covered. Finally, the main challenges and an outlook over the future direction of the field is presented.
Collapse
|
14
|
Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. SENSORS 2021; 21:s21165262. [PMID: 34450704 PMCID: PMC8401600 DOI: 10.3390/s21165262] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.
Collapse
|
15
|
Ravindran N, Kumar S, M Y, S R, C A M, Thirunavookarasu S N, C K S. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: a review. Crit Rev Food Sci Nutr 2021; 63:1055-1077. [PMID: 34328048 DOI: 10.1080/10408398.2021.1958745] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Food safety is the prime area of concern that builds trust. With the prevailing advancements, it has become facile to ensure safety in almost all aspects. Technology has grown from tedious lab techniques to modern chromatographic techniques and immunoassays, progressed with more precise and rapid sensing through the advent of Biosensors. Biosensors provide an automated technology by presenting superfast, nondestructive and cost-effective detection in food analysis. SPR biosensor is an optical biosensor known for its versatility and has wider applications in food testing and analysis. It has an optical system for excitation and interrogation of surface plasmons, and a biomolecular recognition element to detect and seize the target analyte present in a sample. The optical signal detects the binding analyte, on the recognition element, which results in a change in refractive index at the surface and modifies the surface plasmons' propagation constant. SPR aids in label-free detection of various components such as adulterants, antibiotics, biomolecules, genetically modified foods, pesticides, insecticides, herbicides, microorganisms and microbial toxins in food and assures safety. The distinct advancements of SPR in food analysis have been found and discussed. The review also provides knowledge on the advantages and the key challenges encountered by SPR.
Collapse
Affiliation(s)
- Nevetha Ravindran
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | - Sandhya Kumar
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | - Yashini M
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | - Rajeshwari S
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | - Mamathi C A
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | | | - Sunil C K
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| |
Collapse
|
16
|
Trends in the Design of Intensity-Based Optical Fiber Biosensors (2010-2020). BIOSENSORS-BASEL 2021; 11:bios11060197. [PMID: 34203715 PMCID: PMC8232210 DOI: 10.3390/bios11060197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
There exists an increasing interest in monitoring low concentrations of biochemical species, as they allow the early-stage detection of illnesses or the monitoring of the environment quality. Thus, both companies and research groups are focused on the development of accurate, fast and highly sensitive biosensors. Optical fiber sensors have been widely employed for these purposes because they provide several advantages for their use in point-of-care and real-time applications. In particular, this review is focused on optical fiber biosensors based on luminescence and absorption. Apart from the key parameters that determine the performance of a sensor (limit of detection, sensibility, cross-sensibility, etc.), other features are analyzed, such as the optical fiber dimensions, the sensing set ups and the fiber functionalization. The aim of this review is to have a comprehensive insight of the different aspects that must be taken into account when working with this kind of sensors.
Collapse
|
17
|
Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021; 7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections are a major threat to human health, exacerbated by increasing antibiotic resistance. These infections can result in tremendous morbidity and mortality, emphasizing the need to identify and treat pathogenic bacteria quickly and effectively. Recent developments in detection methods have focused on electrochemical, optical, and mass-based biosensors. Advances in these systems include implementing multifunctional materials, microfluidic sampling, and portable data-processing to improve sensitivity, specificity, and ease of operation. Concurrently, advances in antibacterial treatment have largely focused on targeted and responsive delivery for both antibiotics and antibiotic alternatives. Antibiotic alternatives described here include repurposed drugs, antimicrobial peptides and polymers, nucleic acids, small molecules, living systems, and bacteriophages. Finally, closed-loop therapies are combining advances in the fields of both detection and treatment. This review provides a comprehensive summary of the current trends in detection and treatment systems for bacterial infections.
Collapse
Affiliation(s)
- Carly Deusenbery
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Yingying Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
18
|
Liu T, Ding H, Zhan C, Huang J, Wang S. Simply and cost-effectively fabricated AuNP-based fusion spliced transmissive optical fiber LSPR probes. OPTICS EXPRESS 2021; 29:7398-7409. [PMID: 33726241 DOI: 10.1364/oe.417198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The transmissive optical fiber localized surface plasmon resonance (LSPR) sensor has become an effective tool in refractive index sensing because of its compact structure, high sensitivity and strong designability. However, its special structure with the sensing region in the middle of the optical fiber leads to the shortcomings of difficult preparation and poor reproducibility, which greatly restricts its application scopes. In order to solve such problem, we design gold nanoparticle (AuNP)-based fusion spliced transmissive optical fiber LSPR probes, which are fabricated via the fusion splicing between the surface modified combination tapered optical fiber and another multimode quartz optical fiber but are totally different from other fabrications of the reported transmissive optical fiber LSPR probes. The fiber probe fabrication is rather simple and cost-effective, only relying on the procedures of combination tapered optical fiber preparation, surface modification and probe fusion splicing, and except for the probe fusion splicing, the other procedures can be mass prepared thus maintaining high efficiency and good reproducibility in fiber probe fabrications. Moreover, according to the experimental verifications, the proposed fiber probes can reach rather high sensitivity in refractive index sensing with high accuracy and good stability in both static and dynamic detecting modes. Therefore, the AuNP-based fusion spliced transmissive optical fiber LSPR probe is a preferred solution for refractive index sensing and can be widely used in various applications.
Collapse
|
19
|
Liu L, Deng S, Zheng J, Yuan L, Deng H, Teng C. An Enhanced Plastic Optical Fiber-Based Surface Plasmon Resonance Sensor with a Double-Sided Polished Structure. SENSORS 2021; 21:s21041516. [PMID: 33671630 PMCID: PMC7926450 DOI: 10.3390/s21041516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
An enhanced plastic optical fiber (POF)-based surface plasmon resonance (SPR) sensor is proposed by employing a double-sided polished structure. The sensor is fabricated by polishing two sides of the POF symmetrically along with the fiber axis, and a layer of Au film is deposited on each side of the polished region. The SPR can be excited on both polished surfaces with Au film coating, and the number of light reflections will be increased by using this structure. The simulation and experimental results show that the proposed sensor has an enhanced SPR effect. The visibility and full width at half maximum (FWHM) of spectrum can be improved for the high measured refractive index (RI). A sensitivity of 4284.8 nm/RIU is obtained for the double-sided POF-based SPR sensor when the measured liquid RI is 1.42. The proposed SPR sensor is easy fabrication and low cost, which can provide a larger measurement range and action area to the measured samples, and it has potential application prospects in the oil industry and biochemical sensing fields.
Collapse
Affiliation(s)
- Lian Liu
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China; (L.L.); (S.D.); (L.Y.); (H.D.)
| | - Shijie Deng
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China; (L.L.); (S.D.); (L.Y.); (H.D.)
| | - Jie Zheng
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Libo Yuan
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China; (L.L.); (S.D.); (L.Y.); (H.D.)
| | - Hongchang Deng
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China; (L.L.); (S.D.); (L.Y.); (H.D.)
| | - Chuanxin Teng
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China; (L.L.); (S.D.); (L.Y.); (H.D.)
- Correspondence: ; Tel.: +86-0773-2290-083
| |
Collapse
|
20
|
Tang J, Li Z, Xie M, Zhang Y, Long W, Long S, Wen T, Fang Z, Zhu W, Zheng H, Luo Y, Guan H, Lu H, Zhang J, Yu J, Chen Z. Optical fiber bio-sensor for phospholipase using liquid crystal. Biosens Bioelectron 2020; 170:112547. [PMID: 33010707 DOI: 10.1016/j.bios.2020.112547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
A cost-effective and label-free optical fiber sensor was proposed to detect phospholipase A2 (PLA2) in nM concentration. The sensor is made of an alkoxysilane-modified side-polished fiber (SPF) coated with 4'-pentyl-4-cyanobiphenyl (5CB) and self-assembled phospholipid (L-DLPC). It is found that the relative transmission optical power (RTOP) of the fiber sensor decreases due to the 5CB realignment and redistribution induced by the PLA2 hydrolysis of L-DLPC. The response-time at 5 dB RTOP variation exhibits an exponential dependence on PLA2 concentration, allowing us to detect the PLA2 by the 5 dB-response time. This detection method can reduce the detection time. Compare with the traditional copper-grid sensor, the proposed novel fiber sensor has a lower detection limit (<1 nM). Furthermore, the sensor has good repeat-ability and specificity.The sensor's RTOP variation for PLA2 detection at 1 nM is ~21 times higher than that for five other enzymes (trypsin, amylase, thrombin, glucose oxidase, pepsin) at 1000 nM and lipase at 50 nM. This confirms the sensor's excellent PLA2 specificity. The fiber sensor provides a potential way to be incorporated into micro-flow chips to quantitatively detect biological molecules in a real-time and online manner.
Collapse
Affiliation(s)
- Jieyuan Tang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhibin Li
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Mengyuan Xie
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Wenjin Long
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Shun Long
- Department of Computer Science, Jinan University, Guangzhou, 510632, China
| | - Tianjin Wen
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhanxiong Fang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Wenguo Zhu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Huadan Zheng
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yunhan Luo
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Heyuan Guan
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Huihui Lu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jianhui Yu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| | - Zhe Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Li J, Wang H, Li Z, Su Z, Zhu Y. Preparation and Application of Metal Nanoparticals Elaborated Fiber Sensors. SENSORS 2020; 20:s20185155. [PMID: 32927607 PMCID: PMC7570743 DOI: 10.3390/s20185155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
In recent years, surface plasmon resonance devices (SPR, or named plamonics) have attracted much more attention because of their great prospects in breaking through the optical diffraction limit and developing new photons and sensing devices. At the same time, the combination of SPR and optical fiber promotes the development of the compact micro-probes with high-performance and the integration of fiber and planar waveguide. Different from the long-range SPR of planar metal nano-films, the local-SPR (LSPR) effect can be excited by incident light on the surface of nano-scaled metal particles, resulting in local enhanced light field, i.e., optical hot spot. Metal nano-particles-modified optical fiber LSPR sensor has high sensitivity and compact structure, which can realize the real-time monitoring of physical parameters, environmental parameters (temperature, humidity), and biochemical molecules (pH value, gas-liquid concentration, protein molecules, viruses). In this paper, both fabrication and application of the metal nano-particles modified optical fiber LSPR sensor probe are reviewed, and its future development is predicted.
Collapse
Affiliation(s)
- Jin Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China
- Correspondence:
| | - Haoru Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhi Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhengcheng Su
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Yue Zhu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| |
Collapse
|
22
|
Esfahani Monfared Y. Overview of Recent Advances in the Design of Plasmonic Fiber-Optic Biosensors. BIOSENSORS-BASEL 2020; 10:bios10070077. [PMID: 32660135 PMCID: PMC7400712 DOI: 10.3390/bios10070077] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Plasmonic fiber-optic biosensors combine the flexibility and compactness of optical fibers and high sensitivity of nanomaterials to their surrounding medium, to detect biological species such as cells, proteins, and DNA. Due to their small size, accuracy, low cost, and possibility of remote and distributed sensing, plasmonic fiber-optic biosensors are promising alternatives to traditional methods for biomolecule detection, and can result in significant advances in clinical diagnostics, drug discovery, food process control, disease, and environmental monitoring. In this review article, we overview the key plasmonic fiber-optic biosensing design concepts, including geometries based on conventional optical fibers like unclad, side-polished, tapered, and U-shaped fiber designs, and geometries based on specialty optical fibers, such as photonic crystal fibers and tilted fiber Bragg gratings. The review will be of benefit to both engineers in the field of optical fiber technology and scientists in the fields of biosensing.
Collapse
|
23
|
Li J, Han D, Zeng J, Deng J, Hu N, Yang J. Multi-channel surface plasmon resonance biosensor using prism-based wavelength interrogation. OPTICS EXPRESS 2020; 28:14007-14017. [PMID: 32403864 DOI: 10.1364/oe.389226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
A portable multi-channel surface plasmon resonance (SPR) biosensor device using prism-based wavelength interrogation is presented. LEDs were adopted as a simple and inexpensive light source, providing a stable spectrum bandwidth for the SPR system. The parallel light was obtained by a collimated unit and illuminated on the sensing chip at a specific angle. A simple, compact and cost-effective spectrometer part constituted of a series of lenses and a prism was designed for the collection of reflected light. Using the multi-channel microfluidic chip as the sensing component, spectral images of multiple tests could be acquired simultaneously, improving the signal processing and detection throughput. Different concentrations of sodium chloride aqueous solution were used to calibrate the device. The linear detection range was 4.32 × 10-2 refractive index units (RIU) and the limit of detection was 6.38 × 10-5 RIU. Finally, the performance of the miniaturized SPR system was evaluated by the detection of immunoglobulin G (IgG).
Collapse
|
24
|
Choi JH, Lee JH, Son J, Choi JW. Noble Metal-Assisted Surface Plasmon Resonance Immunosensors. SENSORS 2020; 20:s20041003. [PMID: 32069896 PMCID: PMC7071002 DOI: 10.3390/s20041003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
For the early diagnosis of several diseases, various biomarkers have been discovered and utilized through the measurement of concentrations in body fluids such as blood, urine, and saliva. The most representative analytical method for biomarker detection is an immunosensor, which exploits the specific antigen-antibody immunoreaction. Among diverse analytical methods, surface plasmon resonance (SPR)-based immunosensors are emerging as a potential detection platform due to high sensitivity, selectivity, and intuitive features. Particularly, SPR-based immunosensors could detect biomarkers without labeling of a specific detection probe, as typical immunosensors such as enzyme-linked immunosorbent assay (ELISA) use enzymes like horseradish peroxidase (HRP). In this review, SPR-based immunosensors utilizing noble metals such as Au and Ag as SPR-inducing factors for the measurement of different types of protein biomarkers, including viruses, microbes, and extracellular vesicles (EV), are briefly introduced.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.S.)
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| | - Joohyung Son
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.S.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.S.)
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
- Correspondence: ; Tel.: +(82)-2-705-8480; Fax: +(82)-2-718-1976
| |
Collapse
|
25
|
Özgür E, Topçu AA, Yılmaz E, Denizli A. Surface plasmon resonance based biomimetic sensor for urinary tract infections. Talanta 2020; 212:120778. [PMID: 32113541 DOI: 10.1016/j.talanta.2020.120778] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Tailor-made Escherichia coli (E. coli) receptors were created with microcontact imprinted technique and binding events of E. coli were carried out by a surface plasmon resonance (SPR) sensor in aqueous solution and in urine mimic in real time and label-free. N-methacryloyl-(l)-histidine methyl ester (MAH) was selected as a functional monomer to design tailor-made E. coli receptors on the polymeric film and during the formation of the polymeric film on a chip surface, Ag nanoparticles (AgNPs) were entrapped into the polymer mixture in order to lower the detection limit of biomimetic SPR based sensor. The polymeric film was characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM), ellipsometer and contact angle measurements. Limit of detection (LOD) was found 0.57 CFU/mL and feasibility of the biomimetic sensor was investigated in urine mimic.
Collapse
Affiliation(s)
- Erdoğan Özgür
- Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey
| | | | - Erkut Yılmaz
- Department of Molecular Biology and Biotechnology, Aksaray University, Aksaray, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
26
|
Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Zhao Y, Tong RJ, Xia F, Peng Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron 2019; 142:111505. [DOI: 10.1016/j.bios.2019.111505] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023]
|
28
|
Plasmonic biosensors for bacterial endotoxin detection on biomimetic C-18 supported fiber optic probes. Biosens Bioelectron 2019; 129:79-86. [DOI: 10.1016/j.bios.2018.12.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/14/2023]
|
29
|
Gong W, Jiang S, Li Z, Li C, Xu J, Pan J, Huo Y, Man B, Liu A, Zhang C. Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF. OPTICS EXPRESS 2019; 27:3483-3495. [PMID: 30732368 DOI: 10.1364/oe.27.003483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/14/2019] [Indexed: 05/18/2023]
Abstract
A D-shape plastic optical fiber (D-POF) surface plasmon resonance (SPR) biosensor based on the graphene/Au film (G/Au) was proposed and experimentally demonstrated for detection of DNA hybridization process. To improve the detection performance of SPR sensors, the Physical Vapor Deposition (PVD) method was used to evaporate the Au film directly onto the graphene grown on copper foil, and the Au film acted as a role of traditional Polymethyl Methacrylate (PMMA). The process made graphene and Au film form seamless contact. Next, the G/Au was transferred onto the D-shape fiber together. We explored the G/Au SPR sensor by using the finite element method (FEM) and obtained the optimum materials thickness to form configuration. Compared to other plastic optical fiber experiments, the proposed sensor's sensitivity was improved effectively and calculated as 1227 nm/RIU in a range of glucose solution. Meanwhile, our proposed sensor successfully distinguishes hybridization and single nucleotide polymorphisms (SNP) by observing the resonance wavelength change. It also exhibits a satisfactory linear response (R2 = 0.996) to the target DNA liquids with respective concentrations of 0.1nM to1µM, which shows this method's wide potential in medical diagnostics.
Collapse
|
30
|
Bolaños Quiñones VA, Zhu H, Solovev AA, Mei Y, Gracias DH. Origami Biosystems: 3D Assembly Methods for Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800230] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vladimir A. Bolaños Quiñones
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Hong Zhu
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Alexander A. Solovev
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Yongfeng Mei
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N Charles Street, 221 Maryland Hall Baltimore MD 21218 USA
| |
Collapse
|
31
|
Surface-Plasmon-Resonance-Based Optical Fiber Curvature Sensor with Temperature Compensation by Means of Dual Modulation Method. SENSORS 2018; 18:s18082608. [PMID: 30096920 PMCID: PMC6111559 DOI: 10.3390/s18082608] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/16/2022]
Abstract
Curvature measurement plays an important role in many fields. Aiming to overcome shortcomings of the existing optical fiber curvature sensors, such as complicated structure and difficulty in eliminating temperature noise, we proposed and demonstrated a simple optical fiber curvature sensor based on surface plasmon resonance. By etching cladding of the step-index multimode fiber and plating gold film on the bare core, the typical Kretschmann configuration is implemented on fiber, which is used as the bending-sensitive region. With increases in the curvature of the optical fiber, the resonance wavelength of the SPR (Surface Plasmon Resonance) dip linear red-shifts while the transmittance decreases linearly. In the curvature range between 0 and 9.17 m−1, the wavelength sensitivity reached 1.50 nm/m−1 and the intensity sensitivity reached −3.66%/m−1. In addition, with increases in the ambient temperature, the resonance wavelength of the SPR dips linearly blueshifts while the transmittance increases linearly. In the temperature range between 20 and 60 °C, the wavelength sensitivity is −0.255 nm/°C and the intensity sensitivity is 0.099%/°C. The sensing matrix is built up by combining the aforementioned four sensitivities. By means of the dual modulation method, the cross-interference caused by temperature change is eliminated. Additionally, simultaneous measurement of curvature and temperature is realized.
Collapse
|
32
|
Chen Y, Wang Z, Liu Y, Wang X, Li Y, Ma P, Gu B, Li H. Recent advances in rapid pathogen detection method based on biosensors. Eur J Clin Microbiol Infect Dis 2018; 37:1021-1037. [DOI: 10.1007/s10096-018-3230-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 12/28/2022]
|