1
|
Yu J, Ma X, Qi S, Liang Z, Wei Z, Li Q, Ni W, Wei S, Zhang S. Key transition technology of ski jumping based on inertial motion unit, kinematics and dynamics. Biomed Eng Online 2023; 22:21. [PMID: 36864414 PMCID: PMC9983218 DOI: 10.1186/s12938-023-01087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND The development and innovation of biomechanical measurement methods provide a solution to the problems in ski jumping research. At present, research on ski jumping mostly focuses on the local technical characteristics of different phases, but studies on the technology transition process are less. OBJECTIVES This study aims to evaluate a measurement system (i.e. the merging of 2D video recording, inertial measurement unit and wireless pressure insole) that can capture a wide range of sport performance and focus on the key transition technical characteristics. METHODS The application validity of the Xsens motion capture system in ski jumping was verified under field conditions by comparing the lower limb joint angles of eight professional ski jumpers during the takeoff phase collected by different motion capture systems (Xsens and Simi high-speed camera). Subsequently, the key transition technical characteristics of eight ski jumpers were captured on the basis of the aforementioned measurement system. RESULTS Validation results indicated that the joint angle point-by-point curve during the takeoff phase was highly correlated and had excellent agreement (0.966 ≤ r ≤ 0.998, P < 0.001). Joint root-mean-square error (RMSE) differences between model calculations were 5.967° for hip, 6.856° for knee and 4.009° for ankle. CONCLUSIONS Compared with 2D video recording, the Xsens system shows excellent agreement to ski jumping. Furthermore, the established measurement system can effectively capture the key transition technical characteristics of athletes, particularly in the dynamic changes of straight turn into arc in inrun, the adjustment of body posture and ski movement during early flight and landing preparation.
Collapse
Affiliation(s)
- Jinglun Yu
- grid.412543.50000 0001 0033 4148Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438 China ,grid.412543.50000 0001 0033 4148School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xinying Ma
- Foundation Courses Research Center, Silicon Lake College, Kunshan, China
| | - Shuo Qi
- grid.412543.50000 0001 0033 4148School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhiqiang Liang
- grid.412543.50000 0001 0033 4148Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438 China ,grid.412543.50000 0001 0033 4148School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhen Wei
- grid.412543.50000 0001 0033 4148School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qi Li
- grid.412543.50000 0001 0033 4148Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438 China ,grid.412543.50000 0001 0033 4148School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weiguang Ni
- grid.64924.3d0000 0004 1760 5735Physical Education College, Jilin University, Changchun, China
| | | | - Shengnian Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China. .,School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
2
|
Kayser B, Mariani B. Exceptional Performance in Competitive Ski Mountaineering: An Inertial Sensor Case Study. Front Sports Act Living 2022; 4:854614. [PMID: 35469245 PMCID: PMC9033938 DOI: 10.3389/fspor.2022.854614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Organized biannually in the Swiss Alps since 1984, the “Patrouille des Glaciers” (PDG) is one of the most challenging long-distance ski mountaineering (skimo) team competitions in the world. The race begins in Zermatt (1,616 m) and ends in Verbier (1,520 m), covering a total distance of 53 km with a cumulated 4,386 m of ascent and 4,482 m of descent. About 4,800 athletes take part in this competition, in teams of three. We hereby present the performance analysis of the uphill parts of this race of a member (#1) of the winning team in 2018, setting a new race record at 5 h and 35 min, in comparison with two amateur athletes. The athletes were equipped with the Global Navigation Satellite System (GNSS) antenna, a heart rate monitor, and a dedicated multisensor inertial measurement unit (IMU) attached to a ski, which recorded spatial-temporal gait parameters and transition events. The athletes' GNSS and heart rate data were synchronized with the IMU data. Athlete #1 had a baseline VO2 max of 80 ml/min/kg, a maximum heart rate of 205 bpm, weighed 69 kg, and had a body mass index (BMI) of 21.3 kg/m2. During the race, he carried 6 kg of gear and kept his heart rate constant around 85% of max. Spatiotemporal parameters analysis highlighted his ability to sustain higher power, higher pace, and, thus, higher vertical velocity than the other athletes. He made longer steps by gliding longer at each step and performed less kick turns in a shorter time. He spent only a cumulative 5 min and 30 s during skins on and off transitions. Skimo performance, thus, requires a high aerobic power of which a high fraction can be maintained for a prolonged time. Our results further confirm earlier observations that speed of ascent during endurance skimo competitions is a function of body weight and race gear and vertical energy cost of locomotion, with the latter function of climbing gradient. It is also the first study to provide some reference benchmarks for spatiotemporal parameters of elite and amateur skimo athletes during climbing using real-world data.
Collapse
Affiliation(s)
- Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Bengt Kayser ; orcid.org/0000-0002-9776-7501
| | | |
Collapse
|
3
|
Sunde A, Christoffersen F, Johansen JM, Støren Ø. Steeper or Faster? Tactical Dispositions to Minimize Oxygen Cost in Ski Mountaineering. Front Sports Act Living 2022; 3:828389. [PMID: 35174324 PMCID: PMC8841821 DOI: 10.3389/fspor.2021.828389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Investigate the effect of speed, inclination, and use of heel elevator on the oxygen cost of vertical climbing (Cvert) in ski mountaineering. Methods In this study, 19 participants who were (3 women and 16 men) moderate- to well-trained recreational Norwegian ski mountaineers were involved. All participants were tested for VO2max in running, and in a ski mountaineering test on a treadmill, to assess Cvert. The test protocol consisted of 12 4 min work periods at different inclinations from 13 to 23°, with continuous VO2 measurements. After every second work period, the inclination increased by 2°, and speed was decreased accordingly. The speed reduction was based on the equation Vvert = speed · sin(α), where α represents the angle of inclination. Vvert was thus held constant for each work period (854 m·h−1). All work periods were completed twice, with and without a heel elevator. Half of the subjects started with the smallest inclination, and the other half started with the steepest inclination. Results The results showed that Cvert was unchanged at all inclinations except 13°, where there was a significantly higher Cvert, at the same Vvert. Only at 13°, Cvert was higher with the use of heel elevator. There was also a significant trend indicating lower Cvert with use of heel elevator with steeper inclination. Conclusions There seemed to be nothing to gain by choosing detours if the inclination was 13° or less. The use of heel elevator was more advantageous, the steeper the inclination, but at 13° there was a negative effect of using heel elevator.
Collapse
|
4
|
Bortolan L, Savoldelli A, Pellegrini B, Modena R, Sacchi M, Holmberg HC, Supej M. Ski Mountaineering: Perspectives on a Novel Sport to Be Introduced at the 2026 Winter Olympic Games. Front Physiol 2021; 12:737249. [PMID: 34744777 PMCID: PMC8566874 DOI: 10.3389/fphys.2021.737249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Ski mountaineering is a rapidly growing winter sport that involves alternately climbing and descending slopes and various racing formats that differ in length and total vertical gain, as well as their distribution of downhill and uphill sections. In recent years, both participation in and media coverage of this sport have increased dramatically, contributing, at least in part, to its inclusion in the 2026 Winter Olympics in Milano-Cortina. Here, our aim has been to briefly describe the major characteristics of ski mountaineering, its physiological and biomechanical demands, equipment, and training/testing, as well as to provide some future perspectives. Despite its popularity, research on this discipline is scarce, but some general characteristics are already emerging. Pronounced aerobic capacity is an important requirement for success, as demonstrated by positive correlations between racing time and maximal oxygen uptake and oxygen uptake at the second ventilatory threshold. Moreover, due to the considerable mechanical work against gravity on demanding uphill terrain, the combined weight of the athlete and equipment is inversely correlated with performance, prompting the development of both lighter and better equipment in recent decades. In ski mountaineering, velocity uphill is achieved primarily by more frequent (rather than longer) strides due primarily to high resistive forces. The use of wearable technologies, designed specifically for analysis in the field (including at elevated altitudes and cold temperatures) and more extensive collaboration between researchers, industrial actors, and coaches/athletes, could further improve the development of this sport.
Collapse
Affiliation(s)
- Lorenzo Bortolan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
| | - Aldo Savoldelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
| | - Barbara Pellegrini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
| | - Roberto Modena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
| | | | | | - Matej Supej
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Snyder C, Martinez A, Strutzenberger G, Stöggl T. Connected skiing: Validation of edge angle and radial force estimation as motion quality parameters during alpine skiing. Eur J Sport Sci 2021; 22:1484-1492. [PMID: 34429026 DOI: 10.1080/17461391.2021.1970236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recent studies have developed wearable sensor systems to detect, classify and evaluate performance during alpine skiing. In order to enrich skiing data to provide motion quality feedback, edge angle (EA) and radial force (Fr) are parameters of interest. However, the estimation of these parameters via calibration-free wearable technologies has not been validated. The purpose of this study was to develop and validate a wearable method to estimate EA and Fr. Participants completed simulated skiing trials on an indoor skiing carpet. Two IMU's mounted to the ski boots estimated EA and Fr and compared to reference values measured with a 3D motion capture system. The performance of the wearable system was quantified by accuracy and precision. The overall accuracy and precision of the wearable system was 97.6 ± 12.4% and 15.5 ± 17.6% for EA, and 105.5 ± 5.7% and 29.8 ± 10.0%, respectively for Fr. The developed wearable system was accurate for the estimation of EA and Fr, but was highly variable with low precision for both metrics. Further research is needed to improve the precision of field-relevant skiing metrics during in-field studies using simple measurement setups that can easily be implemented by recreational and expert skiers alike.Highlights IMU's mounted on the boots are sufficient tools for accurate estimation of edge angle and radial force during both long and short style turns on a skiing simulator.As the estimation of edge angle and radial force are dependent on other estimated parameters (i.e. turn switch), the precision of these metrics is relatively low.The results of the current study apply only to simulated alpine skiing on a treadmill, and further work is required to prove the accuracy and precision of this system on snow.
Collapse
Affiliation(s)
- Cory Snyder
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria.,Athlete Performance Center, Red Bull Sports, Thalgau, Austria
| | - Aaron Martinez
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria.,Athlete Performance Center, Red Bull Sports, Thalgau, Austria
| | - Gerda Strutzenberger
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria.,University Hospital Balgrist, Zürich, Switzerland.,University Children's Hospital, Zürich, Switzerland
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria.,Athlete Performance Center, Red Bull Sports, Thalgau, Austria
| |
Collapse
|
6
|
Lasshofer M, Seifert J, Wörndle AM, Stöggl T. Physiological Responses and Predictors of Performance in a Simulated Competitive Ski Mountaineering Race. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:250-257. [PMID: 34211317 DOI: 10.52082/jssm.2021.250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Competitive ski mountaineering (SKIMO) has achieved great popularity within the past years. However, knowledge about the predictors of performance and physiological response to SKIMO racing is limited. Therefore, 21 male SKIMO athletes split into two performance groups (elite: VO2max 71.2 ± 6.8 ml· min-1· kg-1 vs. sub-elite: 62.5 ± 4.7 ml· min-1· kg-1) were tested and analysed during a vertical SKIMO race simulation (523 m elevation gain) and in a laboratory SKIMO specific ramp test. In both cases, oxygen consumption (VO2), heart rate (HR), blood lactate and cycle characteristics were measured. During the race simulation, the elite athletes were approximately 5 min faster compared with the sub-elite (27:15 ± 1:16 min; 32:31 ± 2:13 min; p < 0.001). VO2 was higher for elite athletes during the race simulation (p = 0.046) and in the laboratory test at ventilatory threshold 2 (p = 0.005) and at maximum VO2 (p = 0.003). Laboratory maximum power output is displayed as treadmill speed and was higher for elite than sub-elite athletes (7.4 ± 0.3 km h-1; 6.6 ± 0.3 km h-1; p < 0.001). Lactate values were higher in the laboratory maximum ramp test than in the race simulation (p < 0.001). Pearson's correlation coefficient between race time and performance parameters was highest for velocity and VO2 related parameters during the laboratory test (r > 0.6). Elite athletes showed their superiority in the race simulation as well as during the maximum ramp test. While HR analysis revealed a similar strain to both cohorts in both tests, the superiority can be explainable by higher VO2 and power output. To further push the performance of SKIMO athletes, the development of named factors like power output at maximum and ventilatory threshold 2 seems crucial.
Collapse
Affiliation(s)
- Michael Lasshofer
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria
| | - John Seifert
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria.,Department of Health & Human Development, Montana State University, Bozeman, MT, USA
| | - Anna-Maria Wörndle
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria.,Red Bull Athlete Performance Center, Salzburg, Austria
| |
Collapse
|
7
|
Comfortable and Convenient Turning Skill Assessment for Alpine Skiers Using IMU and Plantar Pressure Distribution Sensors. SENSORS 2021; 21:s21030834. [PMID: 33513728 PMCID: PMC7865744 DOI: 10.3390/s21030834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 01/21/2023]
Abstract
Improving ski-turn skills is of interest to both competitive and recreational skiers, but it is not easy to improve on one’s own. Although studies have reported various methods of ski-turn skill evaluation, a simple method that can be used by oneself has not yet been established. In this study, we have proposed a comfortable method to assess ski-turn skills; this method enables skiers to easily understand the relationship between body control and ski motion. One expert skier and four intermediate skiers participated in this study. Small inertial measurement units (IMUs) and mobile plantar pressure distribution sensors were used to capture data while skiing, and three ski-turn features—ski motion, waist rotation, and how load is applied to the skis—as well as their symmetry, were assessed. The results showed that the motions of skiing and the waist in the expert skier were significantly larger than those in intermediate skiers. Additionally, we found that the expert skier only slightly used the heel to apply a load to the skis (heel load ratio: approximately 60%) and made more symmetrical turns than the intermediate skiers did. This study will provide a method for recreational skiers, in particular, to conveniently and quantitatively evaluate their ski-turn skills by themselves.
Collapse
|
8
|
Ski Position during the Flight and Landing Preparation Phases in Ski Jumping Detected with Inertial Sensors. SENSORS 2019; 19:s19112575. [PMID: 31174278 PMCID: PMC6603655 DOI: 10.3390/s19112575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/23/2023]
Abstract
Ski movement plays an important role during landing preparation, as well as in the whole ski jumping performance. Good landing preparation timing and correct ski position increase the jump length and reduce the impact forces. Inertial motion units (IMUs) placed on the skis could constitute a promising technology for analyzing the ski movements during training. During regular summer trainings, 10 elite athletes (17 ± 1 years) performed jumps while wearing IMUs and wireless force insoles. This set-up enabled the analysis of a possible correlation between ski movements and ground reaction force (GRF) during landing impact. The results showed that the pitch during the landing preparation is the most influential movement on the impact kinetic variables since it is related to the angle of attack, which affects the aerodynamics. The ski position at 0.16 s before landing did not influence the kinetics because the athlete was too close to the ground. During the impact, the roll angle did not correlate with GRF. Moreover, each athlete showed a different movement pattern during the flight phase. Concluding, the combination of IMUs and force insoles is a promising set-up to analyze ski jumping performance thanks to the fast placement, low weight, and high reliability.
Collapse
|
9
|
Mocera F, Aquilino G, Somà A. NordicWalking Performance Analysis with an Integrated Monitoring System. SENSORS 2018; 18:s18051505. [PMID: 29748507 PMCID: PMC5982472 DOI: 10.3390/s18051505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/16/2022]
Abstract
There is a growing interest in Nordic walking both from the fitness and medical point of views due to its possible therapeutic applications. The proper execution of the technique is an essential requirement to maximize the benefits of this practice. This is the reason why a monitoring system for outdoor Nordic walking activity was developed. Using data obtained from synchronized sensors, it is possible to have a complete overview of the users’ movements. The system described in this paper is able to measure: the pole angle during the pushing phase, the arms cycle frequency and synchronization and the pushing force applied to the ground. Furthermore, data from a GPS module give an image of the environment where the activity session takes place, in terms of the distance, slope, as well as the ground typology. A heart rate sensor is used to monitor the effort of the user through his/her Beats Per Minute (BPM). In this work, the developed monitoring system is presented, explaining how to use the gathered data to obtain the main feedback parameters for Nordic walking performance analysis. The comparison between left and right arm measurements allowed validating the system as a tool for technique evaluation. Finally, a procedure to estimate the peak pushing force from acceleration measurements is proposed.
Collapse
Affiliation(s)
- Francesco Mocera
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy.
| | - Giuseppe Aquilino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy.
| | - Aurelio Somà
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy.
| |
Collapse
|