1
|
Stanley SM, Khera HK, Chandrasingh S, George CE, Mishra RK. A comprehensive review of dengue with a focus on emerging solutions for precision and timely detection. Int J Biol Macromol 2024; 254:127613. [PMID: 37875186 DOI: 10.1016/j.ijbiomac.2023.127613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
Dengue is a global health problem, caused by the dengue virus (DENV), which belongs to the Flaviviridae family of viruses. The transmission of DENV occurs through vectors, Ae. aegypti and Ae. Albopictus mosquitoes, to the human host, classifying it as a vector-borne disease. The disease incidence is increasing at an alarming rate and needs to be tackled to reduce the morbidity and mortality caused by the disease. Environmental and clinical surveillance, detection of the virus, and diagnostics are critical tools to address this issue. In this comprehensive review, we explore various diagnostic techniques and the associated challenges within the context of dengue. While we briefly touch upon dengue's epidemiology, serotypes, and pathogenesis, our primary emphasis remains on diagnostics. We delve into the intricacies of these diagnostic methods, considering both the challenges they entail and the potential they hold in terms of accuracy and accessibility. It's important to note that the review does not extensively cover clinical aspects or regional variations of the disease.
Collapse
Affiliation(s)
- Swetha Mariam Stanley
- Tata Institute for Genetics and Society, Bangalore Life Science Cluster (BLiSC), inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bengaluru, India
| | - Harvinder Kour Khera
- Tata Institute for Genetics and Society, Bangalore Life Science Cluster (BLiSC), inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bengaluru, India.
| | | | | | - Rakesh K Mishra
- Tata Institute for Genetics and Society, Bangalore Life Science Cluster (BLiSC), inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bengaluru, India
| |
Collapse
|
2
|
Biswas P, Mukunthan Sulochana GN, Banuprasad TN, Goyal P, Modak D, Ghosh AK, Chakraborty S. All-Serotype Dengue Virus Detection through Multilayered Origami-Based Paper/Polymer Microfluidics. ACS Sens 2022; 7:3720-3729. [PMID: 36383745 DOI: 10.1021/acssensors.2c01525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dengue virus (DENV) infection commonly triggers threatening seasonal outbreaks all around the globe (estimated yearly infections are in the order of 100 million, combining all the viral serotypes), testifying the need for early detection to facilitate disease management and patient recovery. The laboratory-based testing procedures for detecting DENV infection early enough are challenged by the need of resourced settings that result in inevitable cost penalty and unwarranted delay in obtaining the test results due to distance-related factors with respect to the patient's location. Recognizing that the introduction of alternative extreme point-of-care technologies for early detection may potentially mitigate this challenge largely, we develop here a multiplex paper/polymer-based detection strip that interfaces with an all-in-one simple portable device, synchronizing the pipeline of nucleic acid isolation, isothermal amplification, and colorimetric analytics as well as readout for detecting all the four serotypes of dengue viruses in around 30 min from about 50 μL of human blood serum with high specificity and sensitivity. Aligned with the mandatory guidelines of the World Health Organization, the ultralow-cost test is ideal for dissemination at different community centers via a user-friendly device interface, not only as a critical surveillance measure in recognizing the potential cocirculation of the infection across regions that are hyperendemic for all four DENV serotypes but also for facilitating effective monitoring of patients infected by any one of the particular viral serotypes as well as timely administration of life-saving measures on need.
Collapse
Affiliation(s)
- Poulomi Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | | | - Pankaj Goyal
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Moser N, Yu LS, Rodriguez Manzano J, Malpartida-Cardenas K, Au A, Arkell P, Cicatiello C, Moniri A, Miglietta L, Wang WH, Wang SF, Holmes A, Chen YH, Georgiou P. Quantitative detection of dengue serotypes using a smartphone-connected handheld lab-on-chip platform. Front Bioeng Biotechnol 2022; 10:892853. [PMID: 36185458 PMCID: PMC9521504 DOI: 10.3389/fbioe.2022.892853] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue is one of the most prevalent infectious diseases in the world. Rapid, accurate and scalable diagnostics are key to patient management and epidemiological surveillance of the dengue virus (DENV), however current technologies do not match required clinical sensitivity and specificity or rely on large laboratory equipment. In this work, we report the translation of our smartphone-connected handheld Lab-on-Chip (LoC) platform for the quantitative detection of two dengue serotypes. At its core, the approach relies on the combination of Complementary Metal-Oxide-Semiconductor (CMOS) microchip technology to integrate an array of 78 × 56 potentiometric sensors, and a label-free reverse-transcriptase loop mediated isothermal amplification (RT-LAMP) assay. The platform communicates to a smartphone app which synchronises results in real time with a secure cloud server hosted by Amazon Web Services (AWS) for epidemiological surveillance. The assay on our LoC platform (RT-eLAMP) was shown to match performance on a gold-standard fluorescence-based real-time instrument (RT-qLAMP) with synthetic DENV-1 and DENV-2 RNA and extracted RNA from 9 DENV-2 clinical isolates, achieving quantitative detection in under 15 min. To validate the portability of the platform and the geo-tagging capabilities, we led our study in the laboratories at Imperial College London, UK, and Kaohsiung Medical Hospital, Taiwan. This approach carries high potential for application in low resource settings at the point of care (PoC).
Collapse
Affiliation(s)
- Nicolas Moser
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
- *Correspondence: Nicolas Moser,
| | - Ling-Shan Yu
- Institute of Biopharmaceutical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jesus Rodriguez Manzano
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kenny Malpartida-Cardenas
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Anselm Au
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Paul Arkell
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Chiara Cicatiello
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Ahmad Moniri
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Luca Miglietta
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alison Holmes
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yen-Hsu Chen
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Babaei A, Pouremamali A, Rafiee N, Sohrabi H, Mokhtarzadeh A, de la Guardia M. Genosensors as an alternative diagnostic sensing approaches for specific detection of various certain viruses: a review of common techniques and outcomes. Trends Analyt Chem 2022; 155:116686. [PMID: 35611316 PMCID: PMC9119280 DOI: 10.1016/j.trac.2022.116686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Viral infections are responsible for the deaths of millions of people throughout the world. Since outbreak of highly contagious and mutant viruses such as contemporary sars-cov-2 pandemic, has challenged the conventional diagnostic methods, the entity of a thoroughly sensitive, specific, rapid and inexpensive detecting technique with minimum level of false-positivity or -negativity, is desperately needed more than any time in the past decades. Biosensors as minimized devices could detect viruses in simple formats. So far, various nucleic acid, immune- and protein-based biosensors were designed and tested for recognizing the genome, antigen, or protein level of viruses, respectively; however, nucleic acid-based sensing techniques, which is the foundation of constructing genosensors, are preferred not only because of their ultra-sensitivity and applicability in the early stages of infections but also for their ability to differentiate various strains of the same virus. To date, the review articles related to genosensors are just confined to particular pathogenic diseases; In this regard, the present review covers comprehensive information of the research progress of the electrochemical, optical, and surface plasmon resonance (SPR) genosensors that applied for human viruses' diseases detection and also provides a well description of viruses' clinical importance, the conventional diagnosis approaches of viruses and their disadvantages. This review would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Jamaluddin ND, Mazlan NF, Tan LL, Yusof NYM, Khalid B. G-quadruplex microspheres-based optical RNA biosensor for arthropod-borne virus pathogen detection: A proof-of-concept with dengue serotype 2. Int J Biol Macromol 2021; 199:1-9. [PMID: 34922999 DOI: 10.1016/j.ijbiomac.2021.12.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Dengue virus (DENV) is a positive-sense single-stranded RNA virus and that the detection of viral RNA itself is highly desirable, which can be achieved by using RNA biosensor diagnostic method. Herein, acrylic micropolymer-based optical RNA biosensor was developed by binding anionic copper(II) phthalocyanine (CPC) planar aromatic ligand to the G-quadruplex DNA probe via end-stacking with π-system of the guanine (G) quartet, and a blue coloration was developed on the G-quadruplex microspheres. Hybridization of G-quadruplex DNA probe with target DENV serotype 2 (DENV2) RNA unfolded the G-quadruplex, and rendering release of the CPC planar optical label, causing discoloration of the G-quadruplex microbiosensor. Optical characterization of the RNA biosensor was performed by means of fiber optic reflectance spectrophotometer at maximum reflectance wavelength of 774 nm. The reflectance response enhancement of the RNA-responsive G-quadruplex-based reflectometric biosensor was linearly proportional to the target oligo DENV2 RNA concentration in the range of 2 zM-2 μM, with a 0.447 zM limit of detection and a rapid response time of 30 min. Heightening in the reflectance signal based on structural transition of G-quadruplex in response to target RNA was successfully implemented in real-time DENV2 detection in non-invasive human fluid samples (i.e. saliva and urine) under informed consent.
Collapse
Affiliation(s)
- Nur Diyana Jamaluddin
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Nur-Fadhilah Mazlan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Bahariah Khalid
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Hospital Serdang, Jalan Puchong, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Sahudin MA, Tan LL, Su'ait MS, Karim NHA, Mackeen MM. Regenerable and selective histamine impedimetric sensor based on hydroxyl functionalised Schiff base complex electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Sadighbayan D, Ghafar-Zadeh E. Portable Sensing Devices for Detection of COVID-19: A Review. IEEE SENSORS JOURNAL 2021; 21:10219-10230. [PMID: 36790948 PMCID: PMC8769007 DOI: 10.1109/jsen.2021.3059970] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus pandemic is the most challenging incident that people have faced in recent years. Despite the time-consuming and expensive conventional methods, point-of-care diagnostics have a crucial role in deterrence, timely detection, and intensive care of the disease's progress. Hence, this detrimental health emergency persuaded researchers to accelerate the development of highly-scalable diagnostic devices to control the propagation of the virus even in the least developed countries. The strategies exploited for detecting COVID-19 stem from the already designed systems for studying other maladies, particularly viral infections. The present report reviews not only the novel advances in portable diagnostic devices for recognizing COVID-19, but also the previously existing biosensors for detecting other viruses. It discusses their adaptability for identifying surface proteins, whole viruses, viral genomes, host antibodies, and other biomarkers in biological samples. The prominence of different types of biosensors such as electrochemical, optical, and electrical for detecting low viral loads have been underlined. Thus, it is anticipated that this review will assist scientists who have embarked on a competition to come up with more efficient and marketable in-situ test kits for identifying the infection even in its incubation time without sample pretreatment. Finally, a conclusion is provided to highlight the importance of such an approach for monitoring people to combat the spread of such contagious diseases.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Lassonde School of Engineering, Department of Electrical Engineering and Computer Science, Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
8
|
Ma J, Du M, Wang C, Xie X, Wang H, Zhang Q. Advances in airborne microorganisms detection using biosensors: A critical review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:47. [PMID: 33842019 PMCID: PMC8023783 DOI: 10.1007/s11783-021-1420-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human society on a global scale. In recent years, the detection technology for airborne microorganisms has developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies. However, these technologies still have some shortcomings; they are time-consuming and have low sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory, which limits their applications. A biosensor is a device that converts biological signals into detectable signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity, and low cost, biosensors have been widely used in environmental monitoring, medical research, food and agricultural safety, military medicine and other fields. In recent years, the performance of biosensors has greatly improved, becoming a promising technology for airborne microorganism detection. This review introduces the detection principle of biosensors from the three aspects of component identification, energy conversion principle, and signal amplification. It also summarizes its research and application in airborne microorganism detection. The new progress and future development trend of the biosensor detection of airborne microorganisms are analyzed.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- National Bio-Protection Engineering Center, Tianjin, 300161 China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222 China
| | - Qian Zhang
- School of Mechanical Engineering and Safety Engineering, Institute of Particle Technology, University of Wuppertal, Wuppertal, D-42119 Germany
| |
Collapse
|
9
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
10
|
Zelada-Guillén GA, Hernández-Pacheco P, Romero-Ávila M, Cañas-Alonso RC, Flores-Álamo M, Escárcega-Bobadilla MV. Acrylic Polymers Containing a Nickel Salphen Complex: An Approach to Supramolecular and Macromolecular Systems. Chempluschem 2020; 85:2546-2556. [PMID: 32945594 DOI: 10.1002/cplu.202000471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization and crystallographic analysis is reported of a new Nickel Salphen complex and its radical copolymerization with n-butyl acrylate and methyl methacrylate to produce novel host macromolecules with tunable association against guest anions. Spectrophotometric titrations of the complex and of the polymers revealed that a supramolecular regulation of guest-binding accessibility was enabled by the number of Ni-Salphen units per chain. The latter content in turn, determined the chain size and molecular weight uniformity upon polymerization, and likely increased the strength in interchain/intrachain non-covalent interactions over the nickel center and the acrylic domains. The study also showed that incorporation of the monomer into the acrylic polymer backbone opened the possibility for the nickel binding site to gain access to host:guest stoichiometric discrimination, switching from 1 : 1 (major) and 1 : 2 (minor) both coexisting for the host when in the free form, to mostly 1 : 2 when in the polymerized version.
Collapse
Affiliation(s)
- Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Paulina Hernández-Pacheco
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Margarita Romero-Ávila
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Roberto Carlos Cañas-Alonso
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Marcos Flores-Álamo
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Martha V Escárcega-Bobadilla
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
11
|
A need to raise the bar - A systematic review of temporal trends in diagnostics for Japanese encephalitis virus infection, and perspectives for future research. Int J Infect Dis 2020; 95:444-456. [PMID: 32205287 PMCID: PMC7294235 DOI: 10.1016/j.ijid.2020.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
Japanese encephalitis virus (JEV) remains a leading cause of neurological infection in Asia. A systematic review identified 20,212 published human cases of laboratory-confirmed JEV infections from 205 studies. 15,167 (75%) of cases were confirmed with the lowest confidence diagnostic test, i.e., level 3 or 4, or level 4. Only 109 (53%) of the studies reported contemporaneous testing for dengue-specific antibodies. A fundamental pre-requisite for the control of JE is lacking — that of a simple and specific diagnostic procedure that can be adapted for point-of-care tests and readily used throughout JE endemic regions of the world.
Objective Japanese encephalitis virus infection (JE) remains a leading cause of neurological disease in Asia, mainly involving individuals living in remote areas with limited access to treatment centers and diagnostic facilities. Laboratory confirmation is fundamental for the justification and implementation of vaccination programs. We reviewed the literature on historical developments and current diagnostic capability worldwide, to identify knowledge gaps and instill urgency to address them. Methods Searches were performed in Web of Science and PubMed using the term 'Japanese encephalitis' up to 13th October 2019. Studies reporting laboratory-confirmed symptomatic JE cases in humans were included, and data on details of diagnostic tests were extracted. A JE case was classified according to confirmatory levels (Fischer et al., 2008; Campbell et al., 2011; Pearce et al., 2018; Heffelfinger et al., 2017), where level 1 represented the highest level of confidence. Findings 20,212 published JE cases were identified from 205 studies. 15,167 (75%) of these positive cases were confirmed with the lowest-confidence diagnostic tests (level 3 or 4, or level 4). Only 109 (53%) of the studies reported contemporaneous testing for dengue-specific antibodies. Conclusion A fundamental pre-requisite for the control of JEV is lacking — that of a simple and specific diagnostic procedure that can be adapted for point-of-care tests and readily used throughout JE-endemic regions of the world.
Collapse
|
12
|
Omar NAS, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WMEMM, Sadrolhosseini AR, Mahdi MA. Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci Rep 2020; 10:2374. [PMID: 32047209 PMCID: PMC7012912 DOI: 10.1038/s41598-020-59388-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 02/03/2023] Open
Abstract
In this work, sensitive detection of dengue virus type 2 E-proteins (DENV-2 E-proteins) was performed in the range of 0.08 pM to 0.5 pM. The successful DENV detection at very low concentration is a matter of concern for targeting the early detection after the onset of dengue symptoms. Here, we developed a SPR sensor based on self-assembled monolayer/reduced graphene oxide-polyamidoamine dendrimer (SAM/NH2rGO/PAMAM) thin film to detect DENV-2 E-proteins. Surface characterizations involving X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirms the incorporation of NH2rGO-PAMAM nanoparticles in the prepared sensor films. The specificity, sensitivity, binding affinity, and selectivity of the SPR sensor were then evaluated. Results indicated that the variation of the sensing layer due to different spin speed, time incubation, and concentration provided a better interaction between the analyte and sensing layer. The linear dependence of the SPR sensor showed good linearity (R2 = 0.92) with the lowest detection of 0.08 pM DENV-2 E-proteins. By using the Langmuir model, the equilibrium association constant was obtained at very high value of 6.6844 TM−1 (R2 = 0.99). High selectivity of the SPR sensor towards DENV-2 E-proteins was achieved in the presence of other competitors.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yasmin Mustapha Kamil
- inLAZER Dynamics Sdn Bhd, InnoHub Unit, Putra Science Park, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Amir Reza Sadrolhosseini
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Adzir Mahdi
- Wireless and Photonics Network Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Mahmoudi T, Chenab KK, Baradaran B, Hashemzaei M, Radinekiyan F, Mokhtarzadeh A, Maleki A. Dengue virus: a review on advances in detection and trends - from conventional methods to novel biosensors. Mikrochim Acta 2019; 186:329. [PMID: 31055654 DOI: 10.1007/s00604-019-3420-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/06/2019] [Indexed: 02/06/2023]
Abstract
Dengue virus is an important arbovirus infection which transmitted by the Aedes female mosquitoes. The attempt to control and early detection of this infection is a global public health issue at present. Because of the clinical importance of its detection, the main focus of this review is on all of the methods that can offer the new diagnosis strategies. The advantages and disadvantages of reported methods have been discussed comprehensively from different aspects like biomarkers type, sensitivity, accuracy, rate of detection, possibility of commercialization, availability, limit of detection, linear range, simplicity, mechanism of detection, and ability of usage for clinical applications. The optical, electrochemical, microfluidic, enzyme linked immunosorbent assay (ELISA), and smartphone-based biosensors are the main approaches which developed for detection of different biomarkers and serotypes of Dengue virus. Future efforts in miniaturization of these methods open the horizons for development of commercial biosensors for early-diagnosis of Dengue virus infection. Graphical abstract Transmission of Dengue virus by the biting of an Aedes aegypti mosquito, the symptoms of Dengue hemorrhagic fever and the structure of Dengue virus and application of biosensors for its detection.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|