1
|
Zhu H, Sharif Khodaei Z, M H Aliabadi F. Appraisal of linear baseline-free techniques for guided wave based structural health monitoring. ULTRASONICS 2024; 144:107445. [PMID: 39232271 DOI: 10.1016/j.ultras.2024.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
This paper offers a comprehensive critical appraisal and experimental comparison of leading linear baseline-free techniques applied in guided wave-based structural health monitoring (GWSHM). The paper extensively examines the most popular linear baseline-free techniques, namely Time Reversal (TR), Virtual Time Reversal (VTR), Instantaneous Baseline (IB), and reciprocity-based methods. Detailed discussions on the principles, strengths, and limitations of each technique provide a thorough understanding of their capabilities and challenges. Critical factors affecting performance that influence the performance of baseline-free techniques in damage detection and localization is the main focus of the paper. These factors encompass varying environmental conditions such as temperature fluctuations, geometric and structural complexities, and diverse damage scenarios. The research reported conducts experimental comparisons among VTR, IB, and reciprocity-based techniques as related to the challenging case of composite materials, considering single and dual Barely Visible Damage (BVID) scenarios, temperature variations, boundary reflections, and structural complexities like stiffeners. The results demonstrate that the investigated baseline-free techniques are capable of identifying and localizing damages, albeit with differing capabilities.
Collapse
Affiliation(s)
- Hongmin Zhu
- Department of Aeronautics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK.
| | - Zahra Sharif Khodaei
- Department of Aeronautics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK.
| | - Ferri M H Aliabadi
- Department of Aeronautics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Ju M, Dou Z, Li JW, Qiu X, Shen B, Zhang D, Yao FZ, Gong W, Wang K. Piezoelectric Materials and Sensors for Structural Health Monitoring: Fundamental Aspects, Current Status, and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2023; 23:543. [PMID: 36617146 PMCID: PMC9824551 DOI: 10.3390/s23010543] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 05/14/2023]
Abstract
Structural health monitoring technology can assess the status and integrity of structures in real time by advanced sensors, evaluate the remaining life of structure, and make the maintenance decisions on the structures. Piezoelectric materials, which can yield electrical output in response to mechanical strain/stress, are at the heart of structural health monitoring. Here, we present an overview of the recent progress in piezoelectric materials and sensors for structural health monitoring. The article commences with a brief introduction of the fundamental physical science of piezoelectric effect. Emphases are placed on the piezoelectric materials engineered by various strategies and the applications of piezoelectric sensors for structural health monitoring. Finally, challenges along with opportunities for future research and development of high-performance piezoelectric materials and sensors for structural health monitoring are highlighted.
Collapse
Affiliation(s)
- Min Ju
- Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China
| | - Zhongshang Dou
- Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China
| | - Jia-Wang Li
- Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China
| | - Xuting Qiu
- Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China
| | - Binglin Shen
- Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China
| | - Dawei Zhang
- Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China
| | - Fang-Zhou Yao
- Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China
- Center of Advanced Ceramic Materials and Devices, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314500, China
| | - Wen Gong
- Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China
| | - Ke Wang
- Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Foteinidis G, Kosarli M, Nikiphorides P, Tsirka K, Paipetis AS. Capsule-Based Self-Healing and Self-Sensing Composites with Enhanced Mechanical and Electrical Restoration. Polymers (Basel) 2022; 14:polym14235264. [PMID: 36501658 PMCID: PMC9737270 DOI: 10.3390/polym14235264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we report for the first time the manufacturing and characterization of smart multifunctional, capsule-based self-healing and self-sensing composites. In detail, neat and nanomodified UF microcapsules were synthesized and incorporated into composites with a nanomodified epoxy matrix for the restoration of the mechanical and electrical properties. The electrical properties were evaluated with the use of the impedance spectroscopy method. The self-healing composites were subjected to mode-II fracture toughness tests. Additionally, the lap strap geometry that can simulate the mechanical behavior of a stiffened panel was used. The introduction of the nanomodified self-healing system improved the initial mechanical properties in the mode-II fracture toughness by +29%, while the values after the healing process exceeded the initial one. At lap strap geometry, the incorporation of the self-healing system did not affect the initial mechanical properties that were fully recovered after the healing process.
Collapse
|
4
|
Feng T, Sharif Khodaei Z, Aliabadi MHF. Influence of Composite Thickness on Ultrasonic Guided Wave Propagation for Damage Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:7799. [PMID: 36298153 PMCID: PMC9612351 DOI: 10.3390/s22207799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In this paper, the propagation properties of ultrasonic guided waves (UGWs) in different-thickness composites (i.e., 2, 4 and 9 mm) were critically assessed, and their effectiveness for damage detections and localisations under varying temperatures was demonstrated. A diagnostic film with phased-array lead zirconate titanate (PZT) transducers based on the ink-jet printing technique was used in the experiments. Initially, the dispersion curves for these composites were compared. Next, the effects of the composite thickness on the A0 and S0 mode amplitudes and the group velocity were investigated by active sensing. Next, the behaviours of UGWs under varying temperatures in different-thickness plates were also investigated. Finally, surface-mounted artificial damage and impact damage were detected and located in different composites.
Collapse
|
5
|
Yang X, Xue Z, Zheng H, Qiu L, Xiong K. Mechanic-Electric-Thermal Directly Coupling Simulation Method of Lamb Wave under Temperature Effect. SENSORS (BASEL, SWITZERLAND) 2022; 22:6647. [PMID: 36081104 PMCID: PMC9459707 DOI: 10.3390/s22176647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Lamb Wave (LW)-based structural health monitoring method is promising, but its main obstacle is damage assessment in varying environments. LW simulation based on piezoelectric transducers (referred to as PZTs) is an efficient and low-cost method. This paper proposes a multiphysics simulation method of LW propagation with the PZTs under temperature effect. The effect of temperature on LW propagation is considered from two aspects. On the one hand, temperature affects the material parameters of the structure, the adhesive layers and the PZTs. On the other hand, it is considered that the thermal stress caused by the inconsistency of thermal expansion coefficients among the structure, the adhesive layers, and the PZTs affect the piezoelectric constant of the PZTs. Based on the COMSOL Multiphysics, the mechanic-electric-thermal directly coupling simulation model under temperature effect is established. The simulation model consists of two steps. In the first step, the thermal-mechanic coupling is carried out to calculate the thermal stress, and the thermal stress effect is introduced into the piezoelectric constant model. In the second step, mechanic-electric coupling is carried out to simulate LW propagation, which considers the piezoelectric effect of the PZTs for the LW excitation and reception. The simulation results at -20 °C to 60 °C are obtained and compared to the experiment. The results show that the A0 and S0 mode of simulation signals match well with the experimental measurements. Additionally, the effect of temperature on LW propagation is consistent between simulation and experiment; that is, the amplitude increases, and the phase velocity decreases with the increment of temperature.
Collapse
|
6
|
Smart Patch for Structural Health Monitoring of Composite Repair. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The bondline integrity of a repair patch to the parent composite laminate is considered the most important factor in the repair design. A smart repair patch is proposed here to allow for real-time ultrasonic guided wave monitoring of repaired composites. A diagnostic film with lead zirconate titanate (PZT) transducers and inkjet-printed wires is embedded into the repair patch using a cut-out method. The electro-mechanical impedance (EMI) method is used to verify the integrity of the embedded PZT transducers. The performance of the smart repair patch is assessed on the external panel with artificial bondline delamination and surface-mounted artificial damage. The damage index correlation coefficient and delay-and-sum (DAS) algorithm are used for damage detection and localization. The results show that the developed repair patch can successfully detect and locate damages.
Collapse
|
7
|
Structural Health Monitoring Cost Estimation of a Piezosensorized Aircraft Fuselage. SENSORS 2022; 22:s22051771. [PMID: 35270917 PMCID: PMC8915022 DOI: 10.3390/s22051771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Guided waves-based SHM systems are of interest in the aeronautic sector due to their lightweight, long interrogation distances, and low power consumption. In this study, a bottom-up framework for the estimation of the initial investment cost (COTC) and the added weight (WAW) associated with the integration of a SHM system to an aircraft is presented. The framework provides a detailed breakdown of the activities and their costs for the sensorization of a structure using a fully wired approach or the adoption of the printed diagnostic film. Additionally, the framework considers the difference between configuring the system for Manual or Remote data acquisition. Based on the case study presented on the sensorization of a regional aircraft composite fuselage, there is a trade-off between COTC and WAW for the SHM options considered. The Wired–Manual case leads to the lowest COTC with the highest WAW, while the combination of diagnostic film with a Remote system leads to the highest COTC and the lowest WAW. These estimations capture the characteristics of each system and can be integrated into cost–benefit analyses for the final selection of a particular configuration.
Collapse
|
8
|
A Novel Composite with Structural Health Monitoring Functionality via 2D and 3D Impedance Mapping Topography. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report the transformation of a conventional composite material into a multifunctional structure able to provide information about its structural integrity. A purposely positioned grid of carbon fabric strips located within a glass fibre laminate in alternating 0/90 configuration combined with a ternary nanomodified epoxy matrix imparted structural health monitoring (SHM) topographic capabilities to the composite using the impedance spectroscopy (IS) technique. The matrix was reinforced with homogenously dispersed multi-walled carbon nanotubes (MWCNTs) and carbon black (CB). A sinusoidal electric field was applied locally over a frequency range from 1 Hz to 100 kHz between the junction points of the grid of carbon fabric strips. The proposed design enabled topographic damage assessment after a high-velocity impact via the local monitoring of the impedance. The data obtained from the IS measurements were depicted by magnitude and phase delay Bode plots and Nyquist plots. The impedance values were used to create a 2D and a multi-layer (3D) contour topographical image of the damaged area, which revealed crucial information about the structural integrity of the composite.
Collapse
|
9
|
Infrared Thermography Measurement for Vibration-Based Structural Health Monitoring in Low-Visibility Harsh Environments. SENSORS 2020; 20:s20247067. [PMID: 33321765 PMCID: PMC7763239 DOI: 10.3390/s20247067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
In this study, infrared thermography is used for vibration-based structural health monitoring (SHM). Heat sources are employed as sensors. An acrylic frame structure was experimentally investigated using the heat sources as structural marker points to record the vibration response. The effectiveness of the infrared thermography measurement system was verified by comparing the results obtained using an infrared thermal imager with those obtained using accelerometers. The average error in natural frequency was between only 0.64% and 3.84%. To guarantee the applicability of the system, this study employed the mode shape curvature method to locate damage on a structure under harsh environments, for instance, in dark, hindered, and hazy conditions. Moreover, we propose the mode shape recombination method (MSRM) to realize large-scale structural measurement. The partial mode shapes of the 3D frame structure are combined using the MSRM to obtain the entire mode shape with a satisfactory model assurance criterion. Experimental results confirmed the feasibility of using heat sources as sensors and indicated that the proposed methods are suitable for overcoming the numerous inherent limitations associated with SHM in harsh or remote environments as well as the limitations associated with the SHM of large-scale structures.
Collapse
|
10
|
Design of a Large-Scale Piezoelectric Transducer Network Layer and Its Reliability Verification for Space Structures. SENSORS 2020; 20:s20154344. [PMID: 32759794 PMCID: PMC7435873 DOI: 10.3390/s20154344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022]
Abstract
As an effective structural health monitoring (SHM) technology, the piezoelectric transducer (PZT) and guided wave-based monitoring methods have attracted growing interest in the space field. When facing the large-scale monitoring requirements of space structures, a lot of PZTs are needed and may cause problems regarding to additional weight of connection cables, placement efficiency and performance consistency. The PZT layer is a promising solution against these problems. However, the current PZT layers still face challenges from large-scale lightweight monitoring and the lack of reliability assessment under extreme space service conditions. In this paper, a large-scale PZT network layer (LPNL) design method is proposed to overcome these challenges, by adopting a large-scale lightweight PZT network design method and network splitting–recombination based integration strategy. The developed LPNL offers the advantages of being large size, lightweight, ultra-thin, flexible, customized in shape and highly reliable. A series of extreme environmental tests are performed to verify the reliability of the developed LPNL under space service environment, including extreme temperature conditions, vibration at different flying phases, landing impact, and flying overload. Results show that the developed LPNL can withstand these harsh environmental conditions and presents high reliability and functionality.
Collapse
|
11
|
Gorgin R, Luo Y, Wu Z. Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: A review. ULTRASONICS 2020; 105:106114. [PMID: 32193014 DOI: 10.1016/j.ultras.2020.106114] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Lamb wave is widely recognized as one of the most encouraging tools for structural health monitoring (SHM) systems. In spite of many favourable characteristics of Lamb wave for SHM, real-world application of these systems is still quite limited. Beside the complexities derived from multi-modal, dispersive and multi-path characteristics of Lamb waves, one of the main challenges in Lamb wave based SHM is sensitivity of these systems to environmental and operational conditions (EOCs) parameters. This paper provides a state of the art review of the effects of EOCs parameters including: temperature, moisture, load, vibration and bonding (adhesive layer shear modulus and thickness, bond defects), on Lamb wave propagation. Moreover, this paper provides a summary of compensation strategies to account for EOCs effects as well as baseline free techniques. An objective is also to understand the future directions and areas requiring attention of the researchers.
Collapse
Affiliation(s)
- Rahim Gorgin
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ying Luo
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhanjun Wu
- State Key Laboratory of Structural Analysis for Industry Equipments, School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, Liaoning, China.
| |
Collapse
|
12
|
Feng T, Bekas D, Aliabadi MHF. Active Health Monitoring of Thick Composite Structures by Embedded and Surface-Mounted Piezo Diagnostic Layer. SENSORS 2020; 20:s20123410. [PMID: 32560370 PMCID: PMC7348924 DOI: 10.3390/s20123410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 11/21/2022]
Abstract
An effective approach for an embedded piezo diagnostic layer into thick composite material is presented. The effectiveness of the approach is assessed in comparison to the surface-mounted layer. The proposed manufacturing alleviates difficulties associated with trimming edges of composites when embedding wires. The Electro-Mechanical Impedance technique is used to access the integrity of the piezoelectric sensors bonding process. Comparisons of ultrasonic guided waves are made between embedded and surface-mounted diagnostic layers and their penetration through and across the thickness of the composites. Temperature influences with the range from −40 °C up to 80 °C on embedded and surface-mounted guided waves are investigated. An investigation is carried out into the relationship between amplitude and time-of-flight with temperature at different excitation frequencies. The temperature has significant but different effects on amplitude and phase-shift of guided waves for the embedded layer compared to the surface-mounted layer. A Laser Doppler Vibrometer is used to identify the blue tack and impact damage. Both embedded and surface-mounted layers are shown to be an effective means of generating detectable wave scatter from damage.
Collapse
|
13
|
Khan Y, Thielens A, Muin S, Ting J, Baumbauer C, Arias AC. A New Frontier of Printed Electronics: Flexible Hybrid Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905279. [PMID: 31742812 DOI: 10.1002/adma.201905279] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/08/2019] [Indexed: 05/27/2023]
Abstract
The performance and integration density of silicon integrated circuits (ICs) have progressed at an unprecedented pace in the past 60 years. While silicon ICs thrive at low-power high-performance computing, creating flexible and large-area electronics using silicon remains a challenge. On the other hand, flexible and printed electronics use intrinsically flexible materials and printing techniques to manufacture compliant and large-area electronics. Nonetheless, flexible electronics are not as efficient as silicon ICs for computation and signal communication. Flexible hybrid electronics (FHE) leverages the strengths of these two dissimilar technologies. It uses flexible and printed electronics where flexibility and scalability are required, i.e., for sensing and actuating, and silicon ICs for computation and communication purposes. Combining flexible electronics and silicon ICs yields a very powerful and versatile technology with a vast range of applications. Here, the fundamental building blocks of an FHE system, printed sensors and circuits, thinned silicon ICs, printed antennas, printed energy harvesting and storage modules, and printed displays, are discussed. Emerging application areas of FHE in wearable health, structural health, industrial, environmental, and agricultural sensing are reviewed. Overall, the recent progress, fabrication, application, and challenges, and an outlook, related to FHE are presented.
Collapse
Affiliation(s)
- Yasser Khan
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Arno Thielens
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sifat Muin
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jonathan Ting
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Carol Baumbauer
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ana C Arias
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
14
|
A Novel Fabry-Pérot Optical Sensor for Guided Wave Signal Acquisition. SENSORS 2020; 20:s20061728. [PMID: 32204566 PMCID: PMC7147481 DOI: 10.3390/s20061728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
Abstract
In this paper, a novel hybrid damage detection system is proposed, which utilizes piezoelectric actuators for guided wave excitation and a new fibre optic (FO) sensor based on Fabry-Perot (FP) and Fiber Bragg Grating (FBG). By replacing the FBG sensors with FBG-based FP sensors in the hybrid damage detection system, a higher strain resolution is achieved, which results in higher damage sensitivity and higher reliability in diagnosis. To develop the novel sensor, optimum parameters such as reflectivity, a wavelength spectrum, and a sensor length were chosen carefully through an analytical model of the sensor, which has been validated with experiments. The sensitivity of the new FBG-based FP sensors was compared to FBG sensors to emphasize the superiority of the new sensors in measuring micro-strains. Lastly, the new FBG-based FP sensor was utilized for recording guided waves in a hybrid setup and compared to the conventional FBG hybrid sensor network to demonstrate their improved performance for a structural health monitoring (SHM) application.
Collapse
|
15
|
Su C, Jiang M, Liang J, Tian A, Sun L, Zhang L, Zhang F, Sui Q. Damage Localization of Composites Based on Difference Signal and Lamb Wave Tomography. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E218. [PMID: 31947940 PMCID: PMC6982292 DOI: 10.3390/ma13010218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 01/01/2020] [Indexed: 11/16/2022]
Abstract
In order to deal with the problem of composite damage location, an imaging technique based on differential signal and Lamb wave tomography was proposed. Firstly, the feasibility of the technique put forward was verified by simulation. In this process, the composite model was regularly set down by the circular sensor array, with each sensor acting as an actuator in sequence to generate Lamb waves. Apart from that, other sensors were used to collect response signals. With regard to the damage factor, it was mainly determined by the difference between the damage signal and the non-damage signal. The probabilistic imaging algorithm was employed to carry out damage location imaging. Then, experiments were carried out so as to study the selected composite plate. Finally, the tentative outcomes have illustrated that the maximum error of damage imaging position was 7.07 mm. The relative error was 1.6%. In addition, the method has the characteristics of simple calculation and high imaging efficiency. Therefore, it has large technical potential and wide applications in the damage location and damage recognition for composite material.
Collapse
Affiliation(s)
- Chenhui Su
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.S.); (L.Z.); (F.Z.); (Q.S.)
| | - Mingshun Jiang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.S.); (L.Z.); (F.Z.); (Q.S.)
| | - Jianying Liang
- CRRC Qingdao Sifang Co. Ltd., Qingdao 266111, China; (J.L.); (A.T.); (L.S.)
| | - Aiqin Tian
- CRRC Qingdao Sifang Co. Ltd., Qingdao 266111, China; (J.L.); (A.T.); (L.S.)
| | - Lin Sun
- CRRC Qingdao Sifang Co. Ltd., Qingdao 266111, China; (J.L.); (A.T.); (L.S.)
| | - Lei Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.S.); (L.Z.); (F.Z.); (Q.S.)
| | - Faye Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.S.); (L.Z.); (F.Z.); (Q.S.)
| | - Qingmei Sui
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (C.S.); (L.Z.); (F.Z.); (Q.S.)
| |
Collapse
|
16
|
Impact Localisation in Composite Plates of Different Stiffness Impactors under Simulated Environmental and Operational Conditions. SENSORS 2019; 19:s19173659. [PMID: 31443522 PMCID: PMC6749464 DOI: 10.3390/s19173659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022]
Abstract
A parametric investigation of the effect of impactor stiffness as well as environmental and operational conditions on impact contact behaviour and the subsequently generated lamb waves in composite structures is presented. It is shown that differing impactor stiffness generates the most significant changes in contact area and lamb wave characteristics (waveform, frequency, and amplitude). A novel impact localisation method was developed based on the above observations that allows for variations due to differences in impactor stiffness based on modifications of the reference database method and the Akaike Information Criterion (AIC) time of arrival (ToA) picker. The proposed method was compared against a benchmark method based on artificial neural networks (ANNS) and the normalised smoothed envelope threshold (NSET) ToA extraction method. The results indicate that the proposed method had comparable accuracy to the benchmark method for hard impacts under various environmental and operational conditions when trained only using a single hard impact case. However, when tested with soft impacts, the benchmark method had very low accuracy, whilst the proposed method was able to maintain its accuracy at an acceptable level. Thus, the proposed method is capable of detecting the location of impacts of varying stiffness under various environmental and operational conditions using data from only a single impact case, which brings it closer to the application of data driven impact detection systems in real life structures.
Collapse
|
17
|
AlQattan B, Benton D, Yetisen AK, Butt H. Conformable Holographic Photonic Ink Sensors Based on Adhesive Tapes for Strain Measurements. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29147-29157. [PMID: 31318192 DOI: 10.1021/acsami.9b08545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Buildings, bridges, and aircrafts are frequently exposed to fluctuation loads, which could start with a fine crack that instantly leads to unpredictable structure failures. The stationary strain sensors can be utilized, but they are costly and only detect limited deformation forms and sizes. Here, we fabricated photonic strain sensors on adhesive tapes, which can provide real-time monitoring of irregular surfaces. Holographic interference patterning was used to produce nonlinear curved nanostructures of one dimensional (1D) (900 nm × 880 nm) and two dimensional (2D) from a black dye film on a robust uniform adhesive layer and heat resistance tape. The patterned structure of the black dye was stable in broad pH environments. Diffracted light from the curved nanostructure detected the signal during structural damage, a shift or material tear of 5 με at less than 1.3 N cm-2. Additionally, the 2D nanostructure detected a surface change from x or y axis. Tilting the 1D structure within a range of 0.3° to 14.2° provided visible wavelength changes under broadband light to reveal early deflection signs. The curved nanopatterns could be also used for transferable holographic symbol design. Photonic nanopatterns on an adhesive tape could be used as a rapid response, conformable, lightweight, and low-cost dynamic strain sensor.
Collapse
Affiliation(s)
- Bader AlQattan
- School of Engineering , University of Birmingham , Birmingham B15 2TT , U.K
| | - David Benton
- Aston Institute of Photonics Technologies , Aston University , Birmingham B4 7ET , U.K
| | - Ali K Yetisen
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , U.K
| | - Haider Butt
- Department of Mechanical and Materials Engineering , Khalifa University, Masdar City Campus , Abu Dhabi 127788 , United Arab Emirates
| |
Collapse
|
18
|
Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. SENSORS 2019; 19:s19030545. [PMID: 30696061 PMCID: PMC6387086 DOI: 10.3390/s19030545] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/17/2022]
Abstract
Structural health monitoring (SHM) is being widely evaluated by the aerospace industry as a method to improve the safety and reliability of aircraft structures and also reduce operational cost. Built-in sensor networks on an aircraft structure can provide crucial information regarding the condition, damage state and/or service environment of the structure. Among the various types of transducers used for SHM, piezoelectric materials are widely used because they can be employed as either actuators or sensors due to their piezoelectric effect and vice versa. This paper provides a brief overview of piezoelectric transducer-based SHM system technology developed for aircraft applications in the past two decades. The requirements for practical implementation and use of structural health monitoring systems in aircraft application are then introduced. State-of-the-art techniques for solving some practical issues, such as sensor network integration, scalability to large structures, reliability and effect of environmental conditions, robust damage detection and quantification are discussed. Development trend of SHM technology is also discussed.
Collapse
|
19
|
Development of Steps in an Automated Process Chain for Piezoceramic-Metal Compound Production. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2019. [DOI: 10.3390/jmmp3010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The potential of adaptronic applications has been proven in many conceptual studies. A broad use in high-efficiency branches is often hindered by the absence of an appropriate assembly method. Especially for piezoceramic foil transducers, the application on structural parts can be simplified using a semi-finished part that includes the transducer. The part is then shaped in a final forming operation. The purpose of the present study is the investigation of process limits in automated process chains for producing semi-finished parts. An adhesive is used in the process, which is only locally cured. This bi-conditioned state is achieved using cooling and heating elements. The process limits are mainly affected by the choice of temperature and curing time between adhesive application and forming operation. Several tests with a rotational rheometer were carried out to investigate the curing behavior. An appropriate process window was identified varying processing time and temperature. The results were then used to build a model of the curing behavior. A mathematical approach had to be used to find the best configuration because no sharp border exists between the two adhesive conditions of liquid and solid state. The process parameters were proven with runs inside and outside of the process limits.
Collapse
|