1
|
Ameen Sha M, Meenu PC, Haspel H, Kónya Z. Metal-based non-enzymatic systems for cholesterol detection: mechanisms, features, and performance. RSC Adv 2024; 14:24561-24573. [PMID: 39108964 PMCID: PMC11299639 DOI: 10.1039/d4ra04104f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/17/2024] [Indexed: 01/18/2025] Open
Abstract
Metal based catalysts and electrodes are versatile tools known for their redox properties, catalytic efficiency, and stability under various conditions. Despite the absence of significant scientific hurdles, the utilization of these methods in cholesterol detection, particularly in non-enzymatic approaches, has been relatively underexplored. To this end, there is a pressing need to delve deeper into existing metal-based systems used in non-enzymatic cholesterol sensing, with the goal of fostering the development of innovative practical solutions. Various electrode systems, such as those employing Ni, Ti, Cu, Zn, W, Mn, and Fe, have already been reported for non-enzymatic cholesterol detection, some of them elucidated sensing mechanisms and potential in physiological detection. A detailed mechanistic understanding of oxide-based cholesterol sensors, along with the methodologies for constructing such systems, holds promise of advancing the exploration of practical applications. This review aims to provide a broad perspective on metal oxide systems and their characteristics that are conducive to non-enzymatic cholesterol sensing. It is intended to serve as a springboard with offering a guide to the design and development of efficient and sensitive electrochemical cholesterol sensors.
Collapse
Affiliation(s)
- M Ameen Sha
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - P C Meenu
- Department of Chemistry, Birla Institute of Technology and Science Hyderabad Campus 500078 India
| | - H Haspel
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - Z Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| |
Collapse
|
2
|
Soleimani S, Bruce-Tagoe TA, Ullah N, Rippy MG, Spratt HG, Danquah MK. Development and characterization of a portable electrochemical aptasensor for IsdA protein and Staphylococcus aureus detection. Anal Bioanal Chem 2024; 416:4619-4634. [PMID: 38916796 DOI: 10.1007/s00216-024-05410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Staphylococcus aureus (S. aureus) is recognized as one of the most common causes of gastroenteritis worldwide. This pathogen is a major foodborne pathogen that can cause many different types of various infections, from minor skin infections to lethal blood infectious diseases. Iron-regulated surface determinant protein A (IsdA) is an important protein on the S. aureus surface. It is responsible for iron scavenging via interaction with hemoglobin, haptoglobin, and hemoglobin-haptoglobin complexes. This study develops a portable aptasensor for IsdA and S. aureus detection using aptamer-modified gold nanoparticles (AuNPs) integrated into screen-printed carbon electrodes (SPCEs). The electrode system was made of three parts, including a carbon counter electrode, an AuNPs/carbon working electrode, and a silver reference electrode. The aptamer by Au-S bonding was conjugated on the electrode surface to create the aptasensor platform. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to investigate the binding interactions between the aptasensor and the IsdA protein. CV studies showed a linear correlation between varying S. aureus concentrations within the range of 101 to 106 CFU/mL, resulting in a limit of detection (LOD) of 0.2 CFU/mL. The results demonstrated strong reproducibility, selectivity, and sensitivity of the aptasensor for enhanced detection of IsdA, along with about 93% performance stability after 30 days. The capability of the aptasensor to directly detect S. aureus via the IsdA surface protein binding was further investigated in a food matrix. Overall, the aptasensor device showed the potential for rapid detection of S. aureus, serving as a robust approach to developing real-time aptasensors to identify an extensive range of targets of foodborne pathogens and beyond.
Collapse
Affiliation(s)
- Shokoufeh Soleimani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tracy Ann Bruce-Tagoe
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Meredith G Rippy
- Department of Biology, Geology, and Environmental Science, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Henry G Spratt
- Department of Biology, Geology, and Environmental Science, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Michael K Danquah
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Ayyandurai N, Venkatesan S, Raman S. A Sensitive Enzymatic Electrochemical Biosensor for Cholesterol Based on Cobalt Ferrite@Molybdenum Disulfide/Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:4080-4092. [PMID: 38771954 DOI: 10.1021/acsabm.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Cholesterol is essential in biological systems, and the level of cholesterol in the body of a person acts as a diagnostic marker for a variety of diseases. So, in this work, we fabricated an enzymatic electrochemical biosensor for cholesterol using cobalt ferrite@molybdenum disulfide/gold nanoparticles (CoFe2O4@MoS2/Au). The synthesized composite was used for the determination of cholesterol by voltametric methods. The electroactive material CoFe2O4@MoS2/Au was successfully verified from the physiochemical studies such as XRD, Raman, FT-IR, and XPS spectroscopy along with morphological FESEM and HRTEM characterization. CoFe2O4@MoS2/Au showed outstanding dispersion in the aqueous phase, a large effective area, good biological compatibility, and superior electronic conductivity. The microflower-like CoFe2O4@MoS2/Au was confirmed by scanning electron microscopy. The image of transmission electron microscopy showed decoration of gold nanoparticles on CoFe2O4@MoS2 surfaces. Furthermore, a one-step dip-coating technique was used to build the biosensor used for cholesterol detection. In addition to acting as an enabling matrix to immobilize cholesterol oxidase (ChOx), CoFe2O4@MoS2/Au contributes to an increase in electrical conductivity. The differential pulse voltammetry method was used for the quantitative measurement of cholesterol. The calibration curve for cholesterol was linear in the concentration range of 5 to 100 μM, with a low limit of detection of 0.09 μM and sensitivity of 0.194 μA μM-1 cm-2. Furthermore, the biosensor demonstrates good practicability, as it was also employed for identifying cholesterol in real samples with acceptable selectivity and stability.
Collapse
Affiliation(s)
- Nagarajan Ayyandurai
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Sethuraman Venkatesan
- Research and Development, New Energy Technology Centre, Lithium-Ion Division, Amara Raja Battery Ltd., Karakambadi 517520, Tirupati, Andhra Pradesh, India
| | - Sasikumar Raman
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
4
|
January JL, Tshobeni ZZ, Ngema NPP, Jijana AN, Iwuoha EI, Mulaudzi T, Douman SF, Ajayi RF. Novel Cytochrome P450-3A4 Enzymatic Nanobiosensor for Lapatinib (a Breast Cancer Drug) Developed on a Poly(anilino-co-4-aminobenzoic Acid-Green-Synthesised Indium Nanoparticle) Platform. BIOSENSORS 2023; 13:897. [PMID: 37754131 PMCID: PMC10527071 DOI: 10.3390/bios13090897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Breast cancer (BC) is one of the most common types of cancer disease worldwide and it accounts for thousands of deaths annually. Lapatinib is among the preferred drugs for the treatment of breast cancer. Possible drug toxicity effects of lapatinib can be controlled by real-time determination of the appropriate dose for a patient at the point of care. In this study, a novel highly sensitive polymeric nanobiosensor for lapatinib is presented. A composite of poly(anilino-co-4-aminobenzoic acid) co-polymer {poly(ANI-co-4-ABA)} and coffee extract-based green-synthesized indium nanoparticles (InNPs) was used to develop the sensor platform on a screen-printed carbon electrode (SPCE), i.e., SPCE||poly(ANI-co-4-ABA-InNPs). Cytochrome P450-3A4 (CYP3A4) enzyme and polyethylene glycol (PEG) were incorporated on the modified platform to produce the SPCE||poly(ANI-co-4-ABA-InNPs)|CYP3A4|PEG lapatinib nanobiosensor. Experiments for the determination of the electrochemical response characteristics of the nanobiosensor were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The nanobiosensor calibration for 0-100 ng/mL lapatinib was linear and gave limit of detection (LOD) values of 13.21 ng/mL lapatinib and 18.6 ng/mL lapatinib in physiological buffer and human serum, respectively. The LOD values are much lower than the peak plasma concentration (Cmax) of lapatinib (2.43 µg/mL), which is attained 4 h after the administration of a daily dose of 1250 mg lapatinib. The electrochemical nanobiosensor also exhibited excellent anti-interference performance and stability.
Collapse
Affiliation(s)
- Jaymi Leigh January
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Ziyanda Zamaswazi Tshobeni
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Nokwanda Precious Pearl Ngema
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Abongile Nwabisa Jijana
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Emmanuel Iheanyichukwu Iwuoha
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Takalani Mulaudzi
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Samantha Fiona Douman
- Department of Chemistry, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| | - Rachel Fanelwa Ajayi
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
5
|
Sipuka D, Olorundare FOG, Makaluza S, Midzi N, Sebokolodi TI, Arotiba OA, Nkosi D. Dendrimer-Gold Nanocomposite-Based Electrochemical Aptasensor for the Detection of Dopamine. ACS OMEGA 2023; 8:33403-33411. [PMID: 37744816 PMCID: PMC10515171 DOI: 10.1021/acsomega.3c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/07/2023] [Indexed: 09/26/2023]
Abstract
Dopamine is an important neurotransmitter and biomarker that plays a vital role in our neurological system and body. Thus, it is important to monitor the concentration levels of dopamine in our bodies. We report an aptamer-based sensor fabricated through an electro-co-deposition of a generation 3 poly(propylene imine) (PPI) dendrimer and gold nanoparticles (AuNPs) on a glassy carbon (GC) electrode by cyclic voltammetry. Through self-assembly, a single-stranded thiolated dopamine aptamer was immobilized on the GC/PPI/AuNPs electrode to prepare an aptasensor. Voltammetry and electrochemical impedance spectroscopy (EIS) were used to characterize the modified electrodes. The readout for the biorecognition event between the aptamer and various dopamine concentrations was attained from square wave voltammetry and EIS. The aptasensor detected dopamine from the range of 10-200 nM, with a limit of detection of 0.26 and 0.011 nM from SWV and EIS, respectively. The aptasensor was selective toward dopamine when different amounts of epinephrine and ascorbic acid were present. The aptasensor was applicable in a more complex matrix of human serum.
Collapse
Affiliation(s)
- Dimpo
S. Sipuka
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Foluke O. G. Olorundare
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| | - Sesethu Makaluza
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Nyasha Midzi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| | - Tsholofelo I. Sebokolodi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Omotayo A. Arotiba
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Duduzile Nkosi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| |
Collapse
|
6
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
7
|
Gomez Cardoso A, Rahin Ahmed S, Keshavarz-Motamed Z, Srinivasan S, Reza Rajabzadeh A. Recent advancements of nanomodified electrodes - Towards point-of-care detection of cardiac biomarkers. Bioelectrochemistry 2023; 152:108440. [PMID: 37060706 DOI: 10.1016/j.bioelechem.2023.108440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
The increasing number of deaths from cardiovascular diseases has become a substantial concern in both developed and underdeveloped countries. Rapid and on-site monitoring of this disease is urgently important to control, prevent and make awareness of public health. Recently, a lot of focus has been placed on nanomaterials and modify these nanomaterials have been explored to detect cardiac biomarkers. By implementing biosensors that are modified with novel recognition elements and more stable nanomaterials, the use of electrochemistry for point-of-care devices is more realistic every day. This review focuses on the current state of nanomaterials conjugated biorecognition elements (enzyme integrated with nanomaterials, antibody conjugated nanomaterials and aptamer conjugated nanomaterials) for electrochemical cardiovascular disease detection. Specifically, a lot of attention has been given to the trends toward more stable biosensors that have increased the potential to be used as point-of-care devices for the detection of cardiac biomarkers due to their high stability and specificity. Moreover, the recent progress on biomolecule-free electrochemical nanosensors for cardiovascular disease detection has been considered. At last, the possibility and drawbacks of some of these techniques for point-of-care cardiac device development in the future have been discussed.
Collapse
Affiliation(s)
- Ana Gomez Cardoso
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Syed Rahin Ahmed
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Zahra Keshavarz-Motamed
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Seshasai Srinivasan
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
8
|
Theyagarajan K, Kim YJ. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. BIOSENSORS 2023; 13:bios13040424. [PMID: 37185499 PMCID: PMC10135976 DOI: 10.3390/bios13040424] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical biosensors are superior technologies that are used to detect or sense biologically and environmentally significant analytes in a laboratory environment, or even in the form of portable handheld or wearable electronics. Recently, imprinted and implantable biosensors are emerging as point-of-care devices, which monitor the target analytes in a continuous environment and alert the intended users to anomalies. The stability and performance of the developed biosensor depend on the nature and properties of the electrode material or the platform on which the biosensor is constructed. Therefore, the biosensor platform plays an integral role in the effectiveness of the developed biosensor. Enormous effort has been dedicated to the rational design of the electrode material and to fabrication strategies for improving the performance of developed biosensors. Every year, in the search for multifarious electrode materials, thousands of new biosensor platforms are reported. Moreover, in order to construct an effectual biosensor, the researcher should familiarize themself with the sensible strategies behind electrode fabrication. Thus, we intend to shed light on various strategies and methodologies utilized in the design and fabrication of electrochemical biosensors that facilitate sensitive and selective detection of significant analytes. Furthermore, this review highlights the advantages of various electrode materials and the correlation between immobilized biomolecules and modified surfaces.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
9
|
Electrochemical devices for cholesterol detection. J Pharm Biomed Anal 2023; 224:115195. [PMID: 36493575 DOI: 10.1016/j.jpba.2022.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Cholesterol can be considered as a biomarker of illnesses such as heart and coronary artery diseases or arteriosclerosis. Therefore, the fast determination of its concentration in blood is interesting as a means of achieving an early diagnosis of these unhealthy conditions. Electrochemical sensors and biosensors have become a potential tool for selective and sensitive detection of this biomolecule, combining the analytical advantages of electrochemical techniques with the selective recognition features of modified electrodes. This review covers the different approaches carried out in the development of electrochemical sensors for cholesterol, differentiating between enzymatic biosensors and non-enzymatic systems, highlighting lab-on-a-chip devices. A description of the different modification procedures of the working electrode has been included and the role of the different functional materials used has been discussed.
Collapse
|
10
|
Kavacık M, Kilic MS. Square wave voltammetric detection of cholesterol with biosensor based on poly(styrene--ε-caprolactone)/MWCNTs composite. Biotechnol Appl Biochem 2022. [PMID: 36585847 DOI: 10.1002/bab.2427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/03/2022] [Indexed: 01/01/2023]
Abstract
A novel poly(styrene--ε-caprolactone)/multiwalled carbon nanotubes/cholesterol oxidase film-coated glassy carbon electrode was designed for cholesterol detection by square wave voltammetry (SWV). The biosensor responded to cholesterol with a measurement concentration range between 1 and 130 μM, a relative standard deviation of only 0.095% and accuracy of 100.42% ±2.85 with the SWV technique in the potential range from -0.6 to +0.6 V. The limit of detection was calculated to be 0.63 μM. The biosensor was preserved 91 and 84% of its initial response at the end of the 9st and 25st days, respectively. Human serum from human male AB plasma was analyzed without pretreatment except for dilution to investigate the performance of the biosensor in a complex medium.
Collapse
Affiliation(s)
- Mehmet Kavacık
- Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Muhammet Samet Kilic
- Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
11
|
Ribeiro JF, Melo JR, Santos CDL, Chaves CR, Cabral Filho PE, Pereira G, Santos BS, Pereira GA, Rosa DS, Ribeiro RT, Fontes A. Sensitive Zika Biomarker Detection Assisted by Quantum Dot-Modified Electrochemical Immunosensing Platform. Colloids Surf B Biointerfaces 2022; 221:112984. [DOI: 10.1016/j.colsurfb.2022.112984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
12
|
Plekhanova YV, Rai M, Reshetilov AN. Nanomaterials in bioelectrochemical devices: on applications enhancing their positive effect. 3 Biotech 2022; 12:231. [PMID: 35996672 PMCID: PMC9391563 DOI: 10.1007/s13205-022-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022] Open
Abstract
Electrochemical biosensors and biofuel cells are finding an ever-increasing practical application due to several advantages. Biosensors are miniature measuring devices, which can be used for on-the-spot analyses, with small assay times and sample volumes. Biofuel cells have dual benefits of environmental cleanup and electric energy generation. Application of nanomaterials in biosensor and biofuel-cell devices increases their functioning efficiency and expands spheres of use. This review discusses the potential of nanomaterials in improving the basic parameters of bioelectrochemical systems, including the sensitivity increase, detection lower-limit decrease, detection-range change, lifetime increase, substrate-specificity control. In most cases, the consideration of the role of nanomaterials links a certain type of nanomaterial with its effect on the bioelectrochemical device upon the whole. The review aims at assessing the effects of nanomaterials on particular analytical parameters of a biosensor/biofuel-cell bioelectrochemical device.
Collapse
Affiliation(s)
- Yulia V. Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH 444602 India
| | - Anatoly N. Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
- Tula State University, 300012 Tula, Russian Federation
| |
Collapse
|
13
|
A New Electrocatalytic System Based on Copper (II) Chloride and Magnetic Molecularly Imprinted Polymer Nanoparticles in 3D Printed Microfluidic Flow Cell for Enzymeless and Low-Potential Cholesterol Detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Mbaz GIM, Parani S, Oluwafemi OS. Controlled synthesis of silver-based ternary quantum dots with outstanding luminescence. J Fluoresc 2022; 32:1769-1777. [PMID: 35678901 DOI: 10.1007/s10895-022-02988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Quantum dots (QDs) have attracted much attention over the past decades due to their outstanding properties. However, obtaining QDs with excellent photoluminescence and quantum yields (QYs) from their aqueous synthesis is still a big concern. We herein present a green and facile synthesis of AgInS (AIS) QDs and AgInS-ZnS (AIS-ZnS) core-shell QDs using a combination of two capping agents (glutathione and sodium citrate). The temporal evolution of the optical properties is investigated by varying the reaction time and pH of the solution. The results show that the fluorescence intensity of the QDs increases as the reaction time increase, while the emission position blue-shift as the pH of the solution increase. An outstanding photoluminescence quantum yield (PLQY) of 90% is obtained at optimized synthetic conditions. The Fourier transform Infrared studies confirm efficient passivation of the QDs by the capping agents. The XRD analysis reveals that all the materials crystallize in the tetragonal crystalline phase, while the TEM micrographs of AIS-ZnS QDs reveal a spherical shape. The EDS analysis confirms the presence of Silver, Indium, Sulphide, and Zinc elements. The reported synthetic route is facile and eco-friendly.
Collapse
Affiliation(s)
- Gracia It Mwad Mbaz
- Department of Chemical Sciences, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa.,Center for Nanomaterials Science Research, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa.,Center for Nanomaterials Science Research, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Department of Chemical Sciences, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa. .,Center for Nanomaterials Science Research, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa.
| |
Collapse
|
15
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Nemiwal M, Zhang TC, Kumar D. Enzyme Immobilized Nanomaterials as Electrochemical Biosensors for Detection of Biomolecules. Enzyme Microb Technol 2022; 156:110006. [DOI: 10.1016/j.enzmictec.2022.110006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/09/2023]
|
17
|
Electrochemical sensing of cholesterol based on MWCNTs loaded nanoparticles. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Tsekeli TR, Sebokolodi TI, Sipuka DS, Olorundare FO, Akanji SP, Nkosi D, Arotiba OA. A poly (propylene imine) dendrimer – Carbon nanofiber based aptasensor for bisphenol A in water. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110683] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
21
|
Adel R, Ebrahim S, Shokry A, Soliman M, Khalil M. Nanocomposite of CuInS/ZnS and Nitrogen-Doped Graphene Quantum Dots for Cholesterol Sensing. ACS OMEGA 2021; 6:2167-2176. [PMID: 33521456 PMCID: PMC7841935 DOI: 10.1021/acsomega.0c05416] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 05/05/2023]
Abstract
In this paper, nitrogen graphene quantum dots (N-GQDs) and copper indium sulfide/zinc sulfide (CIS/ZnS) QDs were synthesized via facile hydrothermal and aqueous solution routes, respectively. Herein, a fluorescent nanocomposite has been synthesized between N-GQDs and CIS/ZnS QDs in an aqueous phase. This nanocomposite was characterized by photoluminescence, Raman, and ultraviolet-visible (UV-vis) spectroscopies, high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). This fluorescent nanocomposite was developed as a highly sensitive, selective nonenzymatic cholesterol optical biosensor in 0.312-5 mM cholesterol. HRTEM micrographs confirmed the preparation of CIS/ZnS QDs and N-GQDs with average diameters of 3 and 5 nm, respectively. The as-prepared NG/CIS/ZnS QD nanocomposite had a high sensitivity for cholesterol with a wide linear range of concentration of 0.312-5 mM with an excellent correlation coefficient (R 2) of 0.9688 and limit of detection (LOD) of 0.222 mM.
Collapse
Affiliation(s)
- Rania Adel
- Materials
Science Department, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Shaker Ebrahim
- Materials
Science Department, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Azza Shokry
- Department
of Environmental Studies, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Moataz Soliman
- Materials
Science Department, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Marwa Khalil
- Nanotechnology
and Composite Materials Department, Institute
of New Materials and Advanced Technology, City of Scientific Research
and Technological Applications (SRTA-City), New Borg El Arab City, P.O. Box, 21934 Alexandria, Egypt
| |
Collapse
|
22
|
Catalan-Carrio R, Akyazi T, Basabe-Desmonts L, Benito-Lopez F. Predicting Dimensions in Microfluidic Paper Based Analytical Devices. SENSORS (BASEL, SWITZERLAND) 2020; 21:E101. [PMID: 33375225 PMCID: PMC7794781 DOI: 10.3390/s21010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022]
Abstract
The main problem for the expansion of the use of microfluidic paper-based analytical devices and, thus, their mass production is their inherent lack of fluid flow control due to its uncontrolled fabrication protocols. To address this issue, the first step is the generation of uniform and reliable microfluidic channels. The most common paper microfluidic fabrication method is wax printing, which consists of two parts, printing and heating, where heating is a critical step for the fabrication of reproducible device dimensions. In order to bring paper-based devices to success, it is essential to optimize the fabrication process in order to always get a reproducible device. Therefore, the optimization of the heating process and the analysis of the parameters that could affect the final dimensions of the device, such as its shape, the width of the wax barrier and the internal area of the device, were performed. Moreover, we present a method to predict reproducible devices with controlled working areas in a simple manner.
Collapse
Affiliation(s)
- Raquel Catalan-Carrio
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (R.C.-C.); (T.A.)
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Tugce Akyazi
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (R.C.-C.); (T.A.)
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Basque Foundation for Science, IKERBASQUE, 48013 Bilbao, Spain
- Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- BCMaterials, Basque Centre for Materials, Micro and Nanodevices, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (R.C.-C.); (T.A.)
- Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- BCMaterials, Basque Centre for Materials, Micro and Nanodevices, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
23
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
24
|
Nano-Rods Structured Cerium Oxide Platform for Cholesterol Biosensor. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Bakirhan NK, Topal BD, Ozcelikay G, Karadurmus L, Ozkan SA. Current Advances in Electrochemical Biosensors and Nanobiosensors. Crit Rev Anal Chem 2020; 52:519-534. [DOI: 10.1080/10408347.2020.1809339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nurgul K. Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Burcu D. Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
26
|
Thiruppathi M, Tsai CY, Wang TW, Tsao Y, Wu TH, Ho JAA. Simple and Cost-effective Enzymatic Detection of Cholesterol Using Flow Injection Analysis. ANAL SCI 2020; 36:1119-1124. [PMID: 32908068 DOI: 10.2116/analsci.20p080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A flow-injection analytical (FIA) system was developed for the determination of cholesterol concentrations based on enzymatic reactions that occurred in a cholesterol oxidase (CHOx)-immobilized, fused-silica capillary followed by electrochemical detection. The production of hydrogen peroxide from cholesterol in an enzymatic reaction catalyzed by CHOx was subsequently oxidized electrochemically at an electrode. Our FlA system demonstrated its cost-effectiveness and utility at an applied potential of 0.6 V (vs. Ag/AgCl), a flow rate of 100 μL/min and, under optimal conditions, the resulting signal demonstrated a linear dynamic range from 50 μM to 1.0 mM with a limit of detection (LOD) of 12.4 μM, limit of quantification (LOQ) of 44.9 μM, and the coefficient of variation of 5.17%. In addition, validation of our proposed system using a reference HDL-cholesterol kit used for clinical diagnosis suggested our FIA system was comparable to commercial kits for the determination of the cholesterol incorporation amount in various aqueous liposomal suspensions. These good analytical features achieved by FIA could make the implementation of this methodology possible for on-line monitoring of cholesterol in various types of samples.
Collapse
Affiliation(s)
- Murugan Thiruppathi
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University
| | - Ching-Ying Tsai
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University
| | - Tzu-Wen Wang
- Department of Chemistry, National Tsing Hua University
| | - Yu Tsao
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University
| | - Tsung-Hung Wu
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University.,Department of Chemistry, National Tsing Hua University.,Department of Chemistry, National Taiwan University.,Center for Biotechnology, National Taiwan University
| |
Collapse
|
27
|
Cu 2O/PEDOT:PSS/ZnO Nanocomposite Material Biosensor for Esophageal Cancer Detection. SENSORS 2020; 20:s20092455. [PMID: 32357418 PMCID: PMC7249009 DOI: 10.3390/s20092455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
A highly sensitive photoelectrochemical (PEC) biosensor without external bias was developed in this study. The biosensor was configured with a p-Cu2O and n-ZnO heterostructure. Hexamethylenetetramine (HMTA) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was used to improve the crystal structure of Cu2O and ZnO and reduce the defects in the Cu2O/ZnO interface. This fabrication method provided the highly crystallized Cu2O/ZnO structure with excellent electrical property and photoresponse in visible light. The structure was applied to a biosensor for detecting two different cancerous levels of esophageal cells, namely, OE21 and OE21-1, with a high gain in photocurrent (5.8 and 6.2 times, respectively) and a low detection limit (3000 cells in 50 μL). We believe that such a p-n heterojunction PEC biosensor could advance biosensor development and provide a promising candidate for biomedical applications.
Collapse
|
28
|
Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J Colloid Interface Sci 2020; 560:208-212. [DOI: 10.1016/j.jcis.2019.10.007] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 11/20/2022]
|
29
|
Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J Colloid Interface Sci 2019; 554:603-610. [DOI: 10.1016/j.jcis.2019.07.047] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
|