1
|
Zhu P, Zhang H, Zhang X, Cao W, Wang Q. Modulating the mass sensitivity of graphene resonators via kirigami. NANOTECHNOLOGY 2022; 33:485504. [PMID: 36007461 DOI: 10.1088/1361-6528/ac8c9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The unique mechanical properties of graphene make it an excellent candidate for resonators. We have used molecule dynamic to simulate the resonance process of graphene. The kirigami approach was introduced to improve the mass sensitivity of graphene sheets. Three geometric parameters governing the resonant frequency and mass sensitivity of Kirigami graphene NEMS were defined. The simulation results show that the closer the kirigami defect is to the center of the drum graphene, the higher the mass sensitivity of the graphene. The kirigami graphene shows up to about 2.2 times higher mass sensitivity compared to pristine graphene. Simultaneously, the kirigami graphene has a higher out-of-plane amplitude and easy access to nonlinear vibrations, leading to higher mass sensitivity. Besides, the kirigami structure can restrict the diffusion of gold atoms on graphene under high initial velocity or large tension condition. It is evident that a reasonable defect design can improve the sensitivity and stability of graphene for adsorption mass.
Collapse
Affiliation(s)
- Pengcheng Zhu
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Hao Zhang
- School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Xingbin Zhang
- School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Wei Cao
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Quan Wang
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| |
Collapse
|
2
|
Tan D, Cao X, Huang J, Peng Y, Zeng L, Guo Q, Sun N, Bi S, Ji R, Jiang C. Monolayer MXene Nanoelectromechanical Piezo-Resonators with 0.2 Zeptogram Mass Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201443. [PMID: 35619285 PMCID: PMC9353497 DOI: 10.1002/advs.202201443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
2D materials-based nanoelectromechanical resonant systems with high sensitivity can precisely trace quantities of ultra-small mass molecules and therefore are broadly applied in biological analysis, chemical sensing, and physical detection. However, conventional optical and capacitive transconductance schemes struggle to measure high-order mode resonant effectively, which is the scientific key to further achieving higher accuracy and lower noise. In the present study, the different vibrations of monolayer Ti3 C2 Tx MXene piezo-resonators are investigated, and achieve a high-order f2,3 resonant mode with a ≈234.59 ± 0.05 MHz characteristic peak due to the special piezoelectrical structure of the Ti3 C2 Tx MXene layer. The effective measurements of signals have a low thermomechanical motion spectral density (9.66 ± 0.01 f m H z $\frac{{fm}}{{\sqrt {Hz} }}$ ) and an extensive dynamic range (118.49 ± 0.42 dB) with sub-zeptograms resolution (0.22 ± 0.01 zg) at 300 K temperature and 1 atm. Furthermore, the functional groups of the Ti3 C2 Tx MXene with unique adsorption properties enable a high working range ratio of ≈3100 and excellent repeatability. This Ti3 C2 Tx MXene device demonstrates encouraging performance advancements over other nano-resonators and will lead the related engineering applications including high-sensitivity mass detectors.
Collapse
Affiliation(s)
- Dongchen Tan
- Key Laboratory for Precision and Non‐traditional Machining Technology of the Ministry of EducationDalian University of TechnologyDalian116024China
| | - Xuguang Cao
- Key Laboratory for Precision and Non‐traditional Machining Technology of the Ministry of EducationDalian University of TechnologyDalian116024China
| | - Jijie Huang
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Yan Peng
- Key Laboratory for Precision and Non‐traditional Machining Technology of the Ministry of EducationDalian University of TechnologyDalian116024China
| | - Lijun Zeng
- Key Laboratory for Precision and Non‐traditional Machining Technology of the Ministry of EducationDalian University of TechnologyDalian116024China
| | - Qinglei Guo
- Department of Material Science and EngineeringFrederick Seitz Material Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Nan Sun
- Key Laboratory for Precision and Non‐traditional Machining Technology of the Ministry of EducationDalian University of TechnologyDalian116024China
| | - Sheng Bi
- Key Laboratory for Precision and Non‐traditional Machining Technology of the Ministry of EducationDalian University of TechnologyDalian116024China
| | - Ruonan Ji
- Department of PhysicsNorthwestern Polytechnical UniversityXi'an710072China
| | - Chengming Jiang
- Key Laboratory for Precision and Non‐traditional Machining Technology of the Ministry of EducationDalian University of TechnologyDalian116024China
| |
Collapse
|
3
|
Pang K, Liu X, Pang J, Samy A, Xie J, Liu Y, Peng L, Xu Z, Gao C. Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103740. [PMID: 35064589 DOI: 10.1002/adma.202103740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Atomically thin 2D graphene sheets exhibit unparalleled in-plane stiffness and large out-of-plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene-based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a ≈320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices.
Collapse
Affiliation(s)
- Kai Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Xiaoting Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Jintao Pang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Akram Samy
- Department of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Jin Xie
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Li Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
- Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Research Progress of Graphene Nano-Electromechanical Resonant Sensors—A Review. MICROMACHINES 2022; 13:mi13020241. [PMID: 35208365 PMCID: PMC8876833 DOI: 10.3390/mi13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
Graphene nano-electromechanical resonant sensors have wide application in areas such as seawater desalination, new energy, biotechnology, and aerospace due to their small size, light weight, and high sensitivity and resolution. This review first introduces the physical and chemical properties of graphene and the research progress of four preparation processes of graphene. Next, the principle prototype of graphene resonators is analyzed, and three main methods for analyzing the vibration characteristics of a graphene resonant sheet are described: molecular structural mechanics, non-local elastic theory and molecular dynamics. Then, this paper reviews research on graphene resonator preparation, discussing the working mechanism and research status of the development of graphene resonant mass sensors, pressure sensors and inertial sensors. Finally, the difficulties in developing graphene nano-electromechanical resonant sensors are outlined and the future trend of these sensors is described.
Collapse
|
5
|
A Review on Graphene-Based Nano-Electromechanical Resonators: Fabrication, Performance, and Applications. MICROMACHINES 2022; 13:mi13020215. [PMID: 35208343 PMCID: PMC8880531 DOI: 10.3390/mi13020215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
The emergence of graphene and other two-dimensional materials overcomes the limitation in the characteristic size of silicon-based micro-resonators and paved the way in the realization of nano-mechanical resonators. In this paper, we review the progress to date of the research on the fabrication methods, resonant performance, and device applications of graphene-based nano-mechanical resonators, from theoretical simulation to experimental results, and summarize both the excitation and detection schemes of graphene resonators. In recent years, the applications of graphene resonators such as mass sensors, pressure sensors, and accelerometers gradually moved from theory to experiment, which are specially introduced in this review. To date, the resonance performance of graphene-based nano-mechanical resonators is widely studied by theoretical approaches, while the corresponding experiments are still in the preliminary stage. However, with the continuous progress of the device fabrication and detection technique, and with the improvement of the theoretical model, suspended graphene membranes will widen the potential for ultralow-loss and high-sensitivity mechanical resonators in the near future.
Collapse
|
6
|
Cho JH, Cayll D, Behera D, Cullinan M. Towards Repeatable, Scalable Graphene Integrated Micro-Nano Electromechanical Systems (MEMS/NEMS). MICROMACHINES 2021; 13:27. [PMID: 35056192 PMCID: PMC8777989 DOI: 10.3390/mi13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
The demand for graphene-based devices is rapidly growing but there are significant challenges for developing scalable and repeatable processes for the manufacturing of graphene devices. Basic research on understanding and controlling growth mechanisms have recently enabled various mass production approaches over the past decade. However, the integration of graphene with Micro-Nano Electromechanical Systems (MEMS/NEMS) has been especially challenging due to performance sensitivities of these systems to the production process. Therefore, ability to produce graphene-based devices on a large scale with high repeatability is still a major barrier to the commercialization of graphene. In this review article, we discuss the merits of integrating graphene into Micro-Nano Electromechanical Systems, current approaches for the mass production of graphene integrated devices, and propose solutions to overcome current manufacturing limits for the scalable and repeatable production of integrated graphene-based devices.
Collapse
Affiliation(s)
| | | | | | - Michael Cullinan
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E Dean Keeton St, Austin, TX 78712, USA; (J.H.C.); (D.C.); (D.B.)
| |
Collapse
|
7
|
Optical-Thermally Excited Graphene Resonant Mass Detection: A Molecular Dynamics Analysis. NANOMATERIALS 2021; 11:nano11081924. [PMID: 34443758 PMCID: PMC8400942 DOI: 10.3390/nano11081924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/21/2023]
Abstract
In consideration of the presented optical-thermally excited resonant mass detection scheme, molecular dynamics calculations are performed to investigate the thermal actuation and resonant mass sensing mechanism. The simulation results indicate that an extremely high temperature exists in a 6% central area of the graphene sheet exposed to the exciting laser. Therefore, constraining the laser driving power and enlarging the laser spot radius are essential to weaken the overheating in the middle of the graphene sheet, thus avoiding being burned through. Moreover, molecular dynamics calculations demonstrate a mass sensitivity of 214 kHz/zg for the graphene resonator with a pre-stress of 1 GPa. However, the adsorbed mass would degrade the resonant quality factor from 236 to 193. In comparison, the sensitivity and quality factor could rise by 1.3 and 4 times, respectively, for the graphene sheet with a pre-stress of 5 GPa, thus revealing the availability of enlarging pre-stress for better mass sensing performance.
Collapse
|
8
|
Lu Y, Guo ZS, Fan SC. An Ultrahigh-Sensitivity Graphene Resonant Gyroscope. NANOMATERIALS 2021; 11:nano11081890. [PMID: 34443720 PMCID: PMC8401991 DOI: 10.3390/nano11081890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
In this study, a graphene beam was selected as a sensing element and used to form a graphene resonant gyroscope structure with direct frequency output and ultrahigh sensitivity. The structure of the graphene resonator gyroscope was simulated using the ANSYS finite element software, and the influence of the length, width, and thickness of the graphene resonant beam on the angular velocity sensitivity was studied. The simulation results show that the resonant frequency of the graphene resonant beam decreased with increasing the beam length and thickness, while the width had a negligible effect. The fundamental frequency of the designed graphene resonator gyroscope was more than 20 MHz, and the sensitivity of the angular velocity was able to reach 22,990 Hz/°/h. This work is of great significance for applications in environments that require high sensitivity to extremely weak angular velocity variation.
Collapse
Affiliation(s)
- Yang Lu
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China;
| | - Zhan-She Guo
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China;
- Correspondence: (Z.-S.G.); (S.-C.F.)
| | - Shang-Chun Fan
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China;
- Key Laboratory of Quantum Sensing Technology, Ministry of Industry and Information Technology, Beijing 100191, China
- Correspondence: (Z.-S.G.); (S.-C.F.)
| |
Collapse
|
9
|
Xiao X, Fan SC, Li C. The Effect of Edge Mode on Mass Sensing for Strained Graphene Resonators. MICROMACHINES 2021; 12:mi12020189. [PMID: 33673380 PMCID: PMC7917805 DOI: 10.3390/mi12020189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
Edge mode could disturb the ultra-subtle mass detection for graphene resonators. Herein, classical molecular dynamics simulations are performed to investigate the effect of edge mode on mass sensing for a doubly clamped strained graphene resonator. Compared with the fundamental mode, the localized vibration of edge mode shows a lower frequency with a constant frequency gap of 32.6 GHz, despite the mutable inner stress ranging from 10 to 50 GPa. Furthermore, the resonant frequency of edge mode is found to be insensitive to centrally located adsorbed mass, while the frequency of the fundamental mode decreases linearly with increasing adsorbates. Thus, a mass determination method using the difference of these two modes is proposed to reduce interferences for robust mass measurement. Moreover, molecular dynamics simulations demonstrate that a stronger prestress or a higher width–length ratio of about 0.8 could increase the low-quality factor induced by edge mode, thus improving the performance in mass sensing for graphene resonators.
Collapse
Affiliation(s)
- Xing Xiao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Correspondence: (X.X.); (S.-C.F.); (C.L.)
| | - Shang-Chun Fan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Quantum Sensing Technology (Beihang University), Ministry of Industry and Information Technology, Beijing 100191, China
- Correspondence: (X.X.); (S.-C.F.); (C.L.)
| | - Cheng Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Shenzhen Institute of Beihang University, Shenzhen 518063, China
- Correspondence: (X.X.); (S.-C.F.); (C.L.)
| |
Collapse
|
10
|
Applications of Graphene-Based Materials in Sensors. SENSORS 2020; 20:s20113196. [PMID: 32512876 PMCID: PMC7309103 DOI: 10.3390/s20113196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/04/2023]
Abstract
This Special Issue compiles a set of innovative developments on the use of graphene-based materials in the fabrication of sensors. In particular, these contributions report original studies on a wide variety of sensors, such as gas sensors for NO2 or NH3 detection, antibody biosensors or mass sensors. All these devices have one point in common: they have been built using graphene-based materials like graphene, graphene oxide, reduced graphene oxide, inkject printing graphene, graphene-based composite sponges, graphene screen-printed electrodes or graphene quantum dots.
Collapse
|