1
|
Zhai Z, Liu Y, Li C, Wang D, Wu H. Electronic Noses: From Gas-Sensitive Components and Practical Applications to Data Processing. SENSORS (BASEL, SWITZERLAND) 2024; 24:4806. [PMID: 39123852 PMCID: PMC11314697 DOI: 10.3390/s24154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 08/12/2024]
Abstract
Artificial olfaction, also known as an electronic nose, is a gas identification device that replicates the human olfactory organ. This system integrates sensor arrays to detect gases, data acquisition for signal processing, and data analysis for precise identification, enabling it to assess gases both qualitatively and quantitatively in complex settings. This article provides a brief overview of the research progress in electronic nose technology, which is divided into three main elements, focusing on gas-sensitive materials, electronic nose applications, and data analysis methods. Furthermore, the review explores both traditional MOS materials and the newer porous materials like MOFs for gas sensors, summarizing the applications of electronic noses across diverse fields including disease diagnosis, environmental monitoring, food safety, and agricultural production. Additionally, it covers electronic nose pattern recognition and signal drift suppression algorithms. Ultimately, the summary identifies challenges faced by current systems and offers innovative solutions for future advancements. Overall, this endeavor forges a solid foundation and establishes a conceptual framework for ongoing research in the field.
Collapse
Affiliation(s)
- Zhenyu Zhai
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Yaqian Liu
- Inner Mongolia Institute of Metrology Testing and Research, Hohhot 010020, China
| | - Congju Li
- College of Textiles, Donghua University, Shanghai 201620, China;
| | - Defa Wang
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Hai Wu
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| |
Collapse
|
2
|
Monitoring Botrytis cinerea Infection in Kiwifruit Using Electronic Nose and Machine Learning Techniques. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Prediction of Soil Shear Strength Parameters Using Combined Data and Different Machine Learning Models. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soil shear strength is an important indicator of soil erosion sensitivity and the tillage performance of the cultivated layer. Measuring soil shear strength at a field scale is difficult, time-consuming, and costly. This study proposes a new method to predict soil shear strength parameters (cohesion and internal friction angle) by combining cone penetration test (CPT) data and soil properties. A portable CPT measuring device with two pressure sensors was designed to collect two CPT data in farmland, namely cone tip resistance, and cone side pressure. Direct shear tests were performed in the laboratory to determine the soil shear strength parameters for 83 CPT data collection points. Two easily available soil properties (water content and bulk density) were determined via the oven-drying method. Using the two CPT data and the two soil properties as predictors, three machine learning (ML) models were built for predicting soil cohesion and the internal friction angle, including backpropagation neural network (BPNN), partial least squares regression (PLSR), and support vector regression (SVR). The prediction performance of each model was evaluated using the coefficient of determination (R2), the root-mean-square error (RMSE), and the relative error (RE). The results suggested that among all the evaluated models, the BPNN model was the most suitable prediction model for soil cohesion, and the SVR model performed best in predicting soil internal friction angle. Thus, our findings provide a foundation for the convenient and low-cost measurement of soil shear strength parameters.
Collapse
|
4
|
Abstract
The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.
Collapse
|
5
|
Yin H, Cao Y, Marelli B, Zeng X, Mason AJ, Cao C. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007764. [PMID: 33829545 DOI: 10.1002/adma.202007764] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/12/2020] [Indexed: 05/21/2023]
Abstract
Soil sensors and plant wearables play a critical role in smart and precision agriculture via monitoring real-time physical and chemical signals in the soil, such as temperature, moisture, pH, and pollutants and providing key information to optimize crop growth circumstances, fight against biotic and abiotic stresses, and enhance crop yields. Herein, the recent advances of the important soil sensors in agricultural applications, including temperature sensors, moisture sensors, organic matter compounds sensors, pH sensors, insect/pest sensors, and soil pollutant sensors are reviewed. Major sensing technologies, designs, performance, and pros and cons of each sensor category are highlighted. Emerging technologies such as plant wearables and wireless sensor networks are also discussed in terms of their applications in precision agriculture. The research directions and challenges of soil sensors and intelligent agriculture are finally presented.
Collapse
Affiliation(s)
- Heyu Yin
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Laboratory for Soft Machines & Electronics, School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| | - Yunteng Cao
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Benedetto Marelli
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Xiangqun Zeng
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew J Mason
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Changyong Cao
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Laboratory for Soft Machines & Electronics, School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
6
|
John AT, Murugappan K, Nisbet DR, Tricoli A. An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:2271. [PMID: 33804960 PMCID: PMC8036444 DOI: 10.3390/s21072271] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
An electronic nose (Enose) relies on the use of an array of partially selective chemical gas sensors for identification of various chemical compounds, including volatile organic compounds in gas mixtures. They have been proposed as a portable low-cost technology to analyse complex odours in the food industry and for environmental monitoring. Recent advances in nanofabrication, sensor and microcircuitry design, neural networks, and system integration have considerably improved the efficacy of Enose devices. Here, we highlight different types of semiconducting metal oxides as well as their sensing mechanism and integration into Enose systems, including different pattern recognition techniques employed for data analysis. We offer a critical perspective of state-of-the-art commercial and custom-made Enoses, identifying current challenges for the broader uptake and use of Enose systems in a variety of applications.
Collapse
Affiliation(s)
- Alishba T. John
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra 2601, Australia;
| | - Krishnan Murugappan
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra 2601, Australia;
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia;
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra 2601, Australia;
- Nanotechnology Research Laboratory, Faculty of Engineering, The University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
7
|
Visual Analysis of Odor Interaction Based on Support Vector Regression Method. SENSORS 2020; 20:s20061707. [PMID: 32204317 PMCID: PMC7146738 DOI: 10.3390/s20061707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/02/2022]
Abstract
The complex odor interaction between odorants makes it difficult to predict the odor intensity of their mixtures. The analysis method is currently one of the factors limiting our understanding of the odor interaction laws. We used a support vector regression algorithm to establish odor intensity prediction models for binary esters, aldehydes, and aromatic hydrocarbon mixtures, respectively. The prediction accuracy to both training samples and test samples demonstrated the high prediction capacity of the support vector regression model. Then the optimized model was used to generate extra odor data by predicting the odor intensity of more simulated samples with various mixing ratios and concentration levels. Based on these olfactory measured and model predicted data, the odor interaction was analyzed in the form of contour maps. This intuitive method showed more details about the odor interaction pattern in the binary mixture. We found that that the antagonism effect was commonly observed in these binary mixtures and the interaction degree was more intense when the components’ mixing ratio was close. Meanwhile, the odor intensity level of the odor mixture barely influenced the interaction degree. The machine learning algorithms were considered promising tools in odor researches.
Collapse
|