1
|
Rajasekar M, Ranjitha V, Rajasekar K. Recent Advances in Fluorescent-based Cation Sensors for Biomedical Applications. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
2
|
Sarkar S, Chatterjee A, Biswas K. A Recent Update on Rhodamine Dye Based Sensor Molecules: A Review. Crit Rev Anal Chem 2023; 54:2351-2377. [PMID: 36705594 DOI: 10.1080/10408347.2023.2169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein we have discussed such important modified rhodamine compounds which have been used as chemosensors for the last 7-8 years. This review covered some chemosensors for the detection of metal ions like Al(III), Cu(II), Hg(II), Co(II), Fe(III), Au(III), Cr(III), and some anion like CN-. The selectivity, sensitivity, photophysical properties (i.e., UV-Vis spectral studies, fluorescence studies giving special emphasis to absorption wavelength in UV-Vis spectra and excitation and emission wavelength in fluorescence spectra), binding affinity, the limit of detection, and the application of those chemosensors are described clearly. Here we have also discussed some functionalized rhodamine-based chemosensors that emit in the near-infrared region (NIR) and can target lysosomes and detect lysosomal pH. Their versatile applicability in the medicinal ground is also delineated. We have focused on the photophysical properties of spirolactam rhodamine photoswitches and applications in single-molecule localization microscopy and volumetric 3D light photoactivable dye displays. The real-time detection of radical intermediates has also been exemplified.
Collapse
Affiliation(s)
- Soma Sarkar
- Department of Chemistry, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| | - Kinkar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
3
|
Leng X, Wang D, Mi Z, Zhang Y, Yang B, Chen F. Novel Fluorescence Probe toward Cu2+ Based on Fluorescein Derivatives and Its Bioimaging in Cells. BIOSENSORS 2022; 12:bios12090732. [PMID: 36140117 PMCID: PMC9496130 DOI: 10.3390/bios12090732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
Copper is an important trace element that plays a crucial role in various physiological and biochemical processes in the body. The level of copper content is significantly related to many diseases, so it is very important to establish effective and sensitive methods for copper detection in vitro and vivo. Copper-selective probes have attracted considerable interest in environmental testing and life-process research, but fewer investigations have focused on the luminescence mechanism and bioimaging for Cu2+ detection. In the current study, a novel fluorescein-based A5 fluorescence probe is synthesized and characterized, and the bioimaging performance of the probe is also tested. We observed that the A5 displayed extraordinary selectivity and sensitivity properties to Cu2+ in contrast to other cations in solution. The reaction between A5 and Cu2+ could accelerate the ring-opening process, resulting in a new band at 525 nm during a larger pH range. A good linearity between the fluorescence intensity and concentrations of Cu2+, ranging from 0.1 to 1.5 equivalent, was observed, and the limit detection of A5 to Cu2+ was 0.11 μM. In addition, the Job’s plot and mass spectrum showed that A5 complexed Cu2+ in a 1:1 manner. The apparent color change in the A5–Cu2+ complex under ultraviolet light at low molar concentrations revealed that A5 is a suitable probe for the detection of Cu2+. The biological test results show that the A5 probe has good biocompatibility and can be used for the cell imaging of Cu2+.
Collapse
Affiliation(s)
- Xin Leng
- College of Life Sciences, Northwest University, Xi’an 710069, China
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Du Wang
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, China
| | - Zhaoxiang Mi
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, China
| | - Yuchen Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, China
| | - Bingqin Yang
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
- Correspondence: (B.Y.); (F.C.); Tel.: +86-0298-8302-263
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, China
- Correspondence: (B.Y.); (F.C.); Tel.: +86-0298-8302-263
| |
Collapse
|
4
|
Leng X, She M, Jin X, Chen J, Ma X, Chen F, Li J, Yang B. A Highly Sensitive and Selective Fluorescein-Based Cu 2+ Probe and Its Bioimaging in Cell. Front Nutr 2022; 9:932826. [PMID: 35832048 PMCID: PMC9271948 DOI: 10.3389/fnut.2022.932826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022] Open
Abstract
Copper is a vital trace metal in human body, which plays the significant roles in amounts of physiological and pathological processes. The application of copper-selective probe has attracted great interests from environmental tests to life process research, yet a few of sensitive Cu2+ tests based on on-site analysis have been reported. In this paper, a novel fluorescein-based fluorescent probe N4 was designed, synthesized, and characterized, which exhibited high selectivity and sensitivity to Cu2+ comparing with other metal ions in ethanol–water (1/1, v/v) solution. The probe N4 bonded with Cu2+ to facilitate the ring-opening, and an obvious new band at 525 nm in the fluorescence spectroscopy appeared, which could be used for naked-eye detection of Cu2+ within a broad pH range of 6–9. Meanwhile, a good linearity between the fluorescence intensity and the concentrations of Cu2+ ranged 0.1–1.5 eq. was observed, and the limit of detection of N4 to Cu2+ was calculated to be as low as 1.20 μm. In addition, the interaction mode between N4 and Cu2+ was found to be 1:1 by the Job's plot and mass experiment. Biological experiments showed that the probe N4 exhibited low biological toxicity and could be applied for Cu2+ imaging in living cells. The significant color shift associated with the production of the N4-Cu2+ complex at low micromolar concentrations under UV light endows N4 with a promising probe for field testing of trace Cu2+ ions.
Collapse
Affiliation(s)
- Xin Leng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Mengyao She
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Jiao Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China
| | - Xuehao Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Bingqin Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| |
Collapse
|
5
|
pH-Dependent Selective Colorimetric Detection of Proline and Hydroxyproline with Meldrum’s Acid-Furfural Conjugate. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activated 2-furfural gives intense color formation when reacted with amines, due to a ring opening reaction cascade that furnishes a conjugated molecular system. Unique colorimetric characteristic of this reaction makes it an interesting candidate for developing chemosensors operating in visible range. Among many activated 2-furfural derivatives, Meldrum’s acid furfural conjugate (MAFC) recently gained significant interest as colorimetric chemosensor. MAFC has been explored as selective chemosensor for detecting amines in solution, secondary amines on polymer surfaces and even nitrogen rich amino acids (AA) in aqueous solution. In this work, the pH dependency of MAFC-AA reaction is explored. It was found that proline gives an exceptionally fast colored reaction at pH 11, whereas at other pHs, no naked eye color product formation was observed. The reaction sequence including ring opening reaction upon nucleophilic addition of cyclic amine of proline resulting in a conjugated triene was confirmed by NMR titrations. The highly pH dependent reaction can e.g., potentially be used to detect proline presence in biological samples. An even more intense color formation takes place in the reaction of natural proline derivative 4-hydroxyproline. The detection limit of proline and 4-hydroxyproline with MAFC solution was found to be 11 µM and 6 µM respectively.
Collapse
|
6
|
Sun C, Du S, Zhang T, Han J. A Novel Calix[4]Crown-Based 1,3,4-Oxadiazole as a Fluorescent Chemosensor for Copper(II) Ion Detection. Front Chem 2021; 9:766442. [PMID: 34869207 PMCID: PMC8632693 DOI: 10.3389/fchem.2021.766442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The synthesis and characterization of a novel florescent chemosensor 1 with two different types of cationic binding sites have been reported in this work, which is a calix[4]crown derivative in 1,3-alternate conformation bearing two 2-phenyl-5-(4-dimethylaminopyenyl)-1,3,4-oxadiazole units. The recognition behaviors of 1 in dichloromethane/acetonitrile solution to alkali metal ions (Na+ and K+), alkaline earth metal ions (Mg2+ and Ca2+), and transition metal ions (Co2+, Ni2+, Zn2+, Cd2+, Cu2+, Mn2+, and Ag+) have been investigated by UV-Vis and fluorescence spectra. The fluorescence of 1 might be quenched selectively by Cu2+ due to the photo-induced electron transfer mechanism, and the quenched emission from 1 could be partly revived by the addition of Ca2+ or Mg2+; thus, the receptor 1 might be worked as an on-off switchable fluorescent chemosensor triggered by metal ion exchange.
Collapse
Affiliation(s)
| | | | | | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Zeußel L, Mai P, Sharma S, Schober A, Ren S, Singh S. Colorimetric Method for Instant Detection of Lysine and Arginine Using Novel Meldrum's Acid‐Furfural Conjugate. ChemistrySelect 2021. [DOI: 10.1002/slct.202101140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lisa Zeußel
- Department of Nanobiosystem technology Institute of Chemistry and Biotechnology Technical University Ilmenau Prof-Schmidt-Straße 26 98693 Ilmenau Germany
| | - Patrick Mai
- Department of Nanobiosystem technology Institute of Chemistry and Biotechnology Technical University Ilmenau Prof-Schmidt-Straße 26 98693 Ilmenau Germany
| | - Sanjay Sharma
- Research group Bioorganic Chemistry of Bioactive Surfaces Institute of Chemistry and Biotechnology Prof-Schmidt-Straße 26 98693 Ilmenau Germany
| | - Andreas Schober
- Department of Nanobiosystem technology Institute of Chemistry and Biotechnology Technical University Ilmenau Prof-Schmidt-Straße 26 98693 Ilmenau Germany
| | - Shizhan Ren
- Research group Bioorganic Chemistry of Bioactive Surfaces Institute of Chemistry and Biotechnology Prof-Schmidt-Straße 26 98693 Ilmenau Germany
| | - Sukhdeep Singh
- Department of Nanobiosystem technology Institute of Chemistry and Biotechnology Technical University Ilmenau Prof-Schmidt-Straße 26 98693 Ilmenau Germany
- Research group Bioorganic Chemistry of Bioactive Surfaces Institute of Chemistry and Biotechnology Prof-Schmidt-Straße 26 98693 Ilmenau Germany
| |
Collapse
|
8
|
Duan N, Yang S, Tian H, Sun B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem 2021; 358:129839. [PMID: 33940297 DOI: 10.1016/j.foodchem.2021.129839] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
The beverage industry is confronted with tremendous challenges in terms of quality assurance. The allowed contents of common ingredients such as copper ions, hydrogen sulfide, cysteine and caffeine are stipulated by various governing bodies, and the beverage industry must ensure that it meets these requirements. Due to its unique advantages of high sensitivity, low cost and relatively low toxicity over high-performance liquid chromatography, atomic absorption spectrometry and nanomaterials, the use of organic fluorescent probes for the rapid detection of beverage contents has become a hot research topic. This review summarizes the detection of common substances in wine, tea, mineral water, milk and other beverages. Furthermore, the preparation of test paper and simple colour comparison are discussed to display the rapid qualitative capability of designed probes. To improve the current state of beverage safety, future trends and strategies for fast organic fluorescent probe detection in the beverage industry are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
9
|
Li X, Wen Q, Gu J, Liu W, Wang Q, Zhou G, Gao J, Zheng Y. Diverse reactivity to hypochlorite and copper ions based on a novel Schiff base derived from vitamin B6 cofactor. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Liu JH, Hung YH, Lin SN, Shvetsov SA, Rudyak VY, Emelyanenko AV, Liu CY. Recyclable liquid crystal polymeric sensor beads based on the assistance of radially aligned liquid crystals. Polym J 2020. [DOI: 10.1038/s41428-020-00428-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|