1
|
Zhang Q, Liu T, Yuan X, Zhao X, Zhou L. Aptasensors application for cow's milk allergens detection and early warning: Progress, challenge, and perspective. Talanta 2025; 281:126808. [PMID: 39260252 DOI: 10.1016/j.talanta.2024.126808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Cow's milk allergy (CMA) is considered one of the most prevalent food allergies and a public health concern. Modern medical research shows that the effective way to prevent allergic reactions is to prevent allergic patients from consuming allergenic substances. Therefore, the development of rapid and accurate detection technology for milk allergens detection and early warning is critical to safeguarding those with a cow milk allergy. As the oligonucleotide sequences with high specificity and selectivity, aptamers frequently assemble with transduction elements forming multifarious aptasensors for quantitative detection owing to their high-affinity binding to the target. Current aptasensors in the field of cow's milk allergen detection in recent years are explored in this review. This review takes a look back at a few common assays, including ELISA and PCR, before presenting a clear overview of the aptamer and threshold doses. It delves into a detailed discussion of the current aptamer-based detection techniques and related theories for milk allergen identification. Last but not least, we conclude with a discussion and outlook of the advancements made in allergen detection with aptamers. We sincerely hope that there will be more extensive applications for aptasensors in the future contributing to reducing the possibility of patients suffering from adverse reactions.
Collapse
Affiliation(s)
- Qingya Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiongjie Zhao
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425199, China.
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
2
|
Liu A, Jiang M, Wu Y, Guo H, Kong L, Chen Z, Luo Z. A rapid and sensitive aptamer-based biosensor for beta-lactoglobulin in milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3039-3046. [PMID: 38682261 DOI: 10.1039/d4ay00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Beta-lactoglobulin (β-Lg), a prominent milk protein, is a major contributor to milk allergies. The quantitative assessment of β-Lg is a valuable method for assessing the allergenic potential of dairy products. In this study, a specific aptamer, β-Lg-01, with an affinity constant (KD) of 28.6 nM for β-Lg was screened through seven rounds of magnetic bead SELEX (MB-SELEX). A novel bio-layer interferometry (BLI)-based aptasensor was developed, which had a limit of detection (LOD) of 0.3 ng mL-1, a linear range of 1.5 ng mL-1-15 μg mL-1, and a recovery rate of 102-116% among the milk samples. This aptasensor provides a potential tool for the detection and risk assessment of β-Lg within 10 min.
Collapse
Affiliation(s)
- Anqi Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| | - Meng Jiang
- Hangzhou Institute of Medicine Chinese Academy of Sciences, 310022, China.
| | - Yuyin Wu
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Han Guo
- Hangzhou Institute of Medicine Chinese Academy of Sciences, 310022, China.
| | - Ling Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| | - Zhiwei Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255049, P. R. China
- Institute of Food and Nutrition Science, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Zhaofeng Luo
- Hangzhou Institute of Medicine Chinese Academy of Sciences, 310022, China.
| |
Collapse
|
3
|
Venkatesan M, Hwan Shin J, Park J, Pil Park J. Designing tannic acid-polyethyleneimine-modified electrode and novel affinity peptide for β-lactoglobulin detection in milk. Food Chem 2024; 436:137714. [PMID: 37847961 DOI: 10.1016/j.foodchem.2023.137714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Harmful substances that cause food allergies can pose a significant threat to consumers along with food safety. According to the World Health Organization (WHO), approximately 10 % of the global population is currently affected by food allergies. Therefore, there is an urgent need for the development of more accurate and precise biosensors capable of detecting these hazardous substances including beta-lactoglobulin. Although numerous detection and analysis methods have been developed, they still suffer from various limitations. In this study, a tannic acid-polyethyleneimine (TA-PEI) network modified screen-printed electrodes (SPE) are newly developed and the binding sequence of peptide against β-LG was successfully screened using random peptide library. A novel affinity peptide with the desired sequence of S-L-S-P-S-L-W-Q-V-S-M-L-G-G-G-G-E-P-L-Q-L-K-M against β-lactoglobulin (β-LG) is designed and synthesized. The synthesized affinity peptide was immobilized on TA-PEI modified SPE to develop peptide-based sensor against β-LG for the first time. Under successful optimization, the developed sensor exhibited a linear relationship between 50 and 750 ng, with a Kd of 213.9 ng. In addition, the sensor was able to detect β-LG in cow and goat milk, with average recoveries of 88.5 % and 92.2 %, respectively.
Collapse
Affiliation(s)
- Manju Venkatesan
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong 17546, Republic of Korea
| | - Jae Hwan Shin
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong 17546, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea.
| | - Jong Pil Park
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong 17546, Republic of Korea.
| |
Collapse
|
4
|
Mousavi Khaneghah A, Nematollahi A, AbdiMoghadam Z, Davoudi M, Mostashari P, Marszałek K, Aliyeva A, Javanmardi F. Research progress in the application of emerging technology for reducing food allergens as a global health concern: A systematic review. Crit Rev Food Sci Nutr 2023; 64:9789-9804. [PMID: 37233211 DOI: 10.1080/10408398.2023.2216800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the turn of the century, innovative food processing techniques have quickly risen to the top of the commercial and economic prominence food industry's priority list due to their many benefits over more conventional approaches. Compared to traditional food processing techniques, these innovative procedures retain better the distinctive aspects of food, including its organoleptic and nutritional attributes. Concurrently, there has been a discernible increase in the number of people, particularly infants and young children, who are allergic to certain foods. Although this is widely associated with shifting economic conditions in industrialized and developing countries, the rise of urbanization, the introduction of new eating patterns, and developments in food processing, it still needs to be determined how exactly these factors play a part. Under this circumstance, given the widespread presence of allergens that cause IgE-mediated reactions, it is critical to understand how the structural changes in protein as food is processed to determine whether the specific processing technique (conventional and novel) will be appropriate. This article discusses the impact of processing on protein structure and allergenicity and the implications of current research and methodologies for developing a platform to study future pathways to decrease or eliminate allergenicity in the general population.
Collapse
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Zohreh AbdiMoghadam
- Department of Food Science and Nutrition, Faculty of Medicine, Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Mahshad Davoudi
- Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Vergara-Barberán M, Simó-Alfonso EF, Herrero-Martínez JM, Benavente F. Accurate determination of the milk protein allergen β-lactoglobulin by on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry. Talanta 2023; 259:124542. [PMID: 37086682 DOI: 10.1016/j.talanta.2023.124542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/24/2023]
Abstract
An on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry (AA-SPE-CE-MS) method was developed to purify, preconcentrate, separate, and characterize the milk allergenic protein β-lactoglobulin (β-LG) in food samples. The sorbent to pack into the SPE microcartidges was prepared by immobilizing an aptamer against β-LG onto magnetic bead particles. After optimizing the SPE-CE-MS method, the sample (ca. 75 μL) was loaded in separation background electrolyte (BGE, 2 M acetic acid pH 2.2), while a solution of 100 mM NH4OH (pH 11.2) (ca. 100 nL) was used for the protein elution. The linearity of the method ranged between 0.1 and 20 μg mL-1 and the limit of detection (LOD) was 0.05 μg mL-1, which was 200 times lower than by CE-MS. The method was repeatable in terms of relative standard deviation (RSD) for migration times and peak areas (<0.5% and 2.4%, respectively) and microcartridge lifetime was more than 25 analyses. The applicability of the method for the determination of low levels of β-LG was shown by analyzing milk-free foods (i.e. a 100% cocoa dark chocolate, a hypoallergenic formula for infants, and a dairy-free white bread) and milk-containing white breads. Results were satisfactory in all cases, thus demonstrating the great potential of the developed method for accurate food safety and quality control.
Collapse
Affiliation(s)
- María Vergara-Barberán
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA •UB), University of Barcelona, C/ Martí i Franquès 1-11, 08028 Barcelona, Spain; Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner 50, 46100 Burjassot, Spain
| | | | | | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA •UB), University of Barcelona, C/ Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Emerging Trends of Electrochemical Sensors in Food Analysis. ELECTROCHEM 2023. [DOI: 10.3390/electrochem4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Food quality and safety pose an increasing threat to human health worldwide [...]
Collapse
|
7
|
Raj A, Kumar A. Recent advances in assessment methods and mechanism of microbe-mediated chlorpyrifos remediation. ENVIRONMENTAL RESEARCH 2022; 214:114011. [PMID: 35985484 DOI: 10.1016/j.envres.2022.114011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP) is one of the Organophosphorus pesticides (OPs) primarily used in agriculture to safeguard crops from pests and diseases. The pervasive use of chlorpyrifos is hazardous to humans and the environment as it inhibits the receptor for acetylcholinesterase activity, leading to abnormalities linked to the central nervous system. Hence, there is an ardent need to develop an effective and sustainable approach to the on-site degradation of chlorpyrifos. The role of microbes in the remediation of pesticides is considered the most effective and eco-friendly approach, as they have strong degradative potential due to their gene and enzymes naturally adapted to these sites. Several reports have previously been published on exploring the role of microbes in the degradation of CP. However, detection of CP as an environmental contaminant is an essential prerequisite for developing an efficient microbial-mediated biodegradation method with less harmful intermediates. Most of the articles published to date discuss the fate and impact of CP in the environment along with its degradation mechanism but still fail to discuss the analytical portion. This review is focused on the latest developments in the field of bioremediation of CP along with its physicochemical properties, toxicity, fate, and conventional (UV-Visible spectrophotometer, FTIR, NMR, GC-MS, etc) and advanced detection methods (Biosensors and immunochromatography-based methods) from different environmental samples. Apart from it, this review explores the role of metagenomics, system biology, in-silico tools, and genetic engineering in facilitating the bioremediation of CP. One of the objectives of this review is to educate policymakers with scientific data that will enable the development of appropriate strategies to reduce pesticide exposure and the harmful health impacts on both Human and other environmental components. Moreover, this review provides up-to-date developments related to the sustainable remediation of CP.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
8
|
A Method for Screening Proteases That Can Specifically Hydrolyze the Epitope AA83-105 of α s1-Casein Allergen. Foods 2022; 11:foods11213322. [PMID: 36359934 PMCID: PMC9655875 DOI: 10.3390/foods11213322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Milk protein hydrolysates are common in infant formula, but some of them retain allergenicity due to incomplete hydrolysis of the epitopes for milk allergens. This study explored a method for screening proteases that could specifically hydrolyze the epitope of αs1-casein allergen. Firstly, the αs1-casein epitope AA83-105 was synthesized by the solid-phase synthesis method. Then, after purification and identification, the complete antigen was prepared through coupling with bovine serum albumin (BSA) and was used to raise monoclonal antibodies (mAb) in BALB/c mice. Additionally, an indirect competitive-enzyme-linked immunosorbent assay (icELISA) was established. The mAb raised against αs1-casein protein was used as a control. The results showed that the purity of the synthetic epitope was >90%, and the coupling rate with BSA was 6.31. The mAb subtype is IgG1, with a titer of 1:320,000. The mAb reacted specifically with αs1-casein but did not cross-react with soybean protein. The linear regression equation of the competitive inhibition curve was y = −9.22x + 100.78 (R2 = 0.9891). The detection limit of icELISA method was more sensitive, and the method showed good accuracy and repeatability. The amounts of antigen residues in papain protease hydrolysates were relatively small, and the epitope fragment was detected in papain hydrolysate via mass spectrometry. This study provides ideas and methods for screening proteases that specifically hydrolyze the epitopes of milk allergens and also provides a superior foundation for the development of an advanced hypoallergenic formula.
Collapse
|
9
|
Recent developments in application of nucleic acid aptamer in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Oh HE, Eathorne S, Jones MA. Use of biosensor technology in analysing milk and dairy components: A review. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Curulli A. Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection. BIOSENSORS 2022; 12:bios12070503. [PMID: 35884306 PMCID: PMC9313194 DOI: 10.3390/bios12070503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
Food allergy has been indicated as the most frequent adverse reaction to food ingredients over the past few years. Since the only way to avoid the occurrence of allergic phenomena is to eliminate allergenic foods, it is essential to have complete and accurate information on the components of foodstuff. In this framework, it is mandatory and crucial to provide fast, cost-effective, affordable, and reliable analysis methods for the screening of specific allergen content in food products. This review reports the research advancements concerning food allergen detection, involving electrochemical biosensors. It focuses on the sensing strategies evidencing different types of recognition elements such as antibodies, nucleic acids, and cells, among others, the nanomaterial role, the several electrochemical techniques involved and last, but not least, the ad hoc electrodic surface modification approaches. Moreover, a selection of the most recent electrochemical sensors for allergen detection are reported and critically analyzed in terms of the sensors’ analytical performances. Finally, advantages, limitations, and potentialities for practical applications of electrochemical biosensors for allergens are discussed.
Collapse
Affiliation(s)
- Antonella Curulli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), 00161 Rome, Italy
| |
Collapse
|
12
|
Nehra M, Kumar V, Kumar R, Dilbaghi N, Kumar S. Current Scenario of Pathogen Detection Techniques in Agro-Food Sector. BIOSENSORS 2022; 12:489. [PMID: 35884292 PMCID: PMC9313409 DOI: 10.3390/bios12070489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 05/05/2023]
Abstract
Over the past-decade, agricultural products (such as vegetables and fruits) have been reported as the major vehicles for foodborne diseases, which are limiting food resources. The spread of infectious diseases due to foodborne pathogens poses a global threat to human health and the economy. The accurate and timely detection of infectious disease and of causative pathogens is crucial in the prevention and treatment of disease. Negligence in the detection of pathogenic substances can be catastrophic and lead to a pandemic. Despite the revolution in health diagnostics, much attention has been paid to the agro-food sector regarding the detection of food contaminants (such as pathogens). The conventional analytical techniques for pathogen detection are reliable and still in operation. However, laborious procedures and time-consuming detection via these approaches emphasize the need for simple, easy-to-use, and affordable detection techniques. The rapid detection of pathogens from food is essential to avoid the morbidity and mortality originating from the suboptimal nature of empiric pathogen treatment. This review critically discusses both the conventional and emerging bio-molecular approaches for pathogen detection in agro-food.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Virendra Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| |
Collapse
|
13
|
Polat EO, Cetin MM, Tabak AF, Bilget Güven E, Uysal BÖ, Arsan T, Kabbani A, Hamed H, Gül SB. Transducer Technologies for Biosensors and Their Wearable Applications. BIOSENSORS 2022; 12:385. [PMID: 35735533 PMCID: PMC9221076 DOI: 10.3390/bios12060385] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 05/17/2023]
Abstract
The development of new biosensor technologies and their active use as wearable devices have offered mobility and flexibility to conventional western medicine and personal fitness tracking. In the development of biosensors, transducers stand out as the main elements converting the signals sourced from a biological event into a detectable output. Combined with the suitable bio-receptors and the miniaturization of readout electronics, the functionality and design of the transducers play a key role in the construction of wearable devices for personal health control. Ever-growing research and industrial interest in new transducer technologies for point-of-care (POC) and wearable bio-detection have gained tremendous acceleration by the pandemic-induced digital health transformation. In this article, we provide a comprehensive review of transducers for biosensors and their wearable applications that empower users for the active tracking of biomarkers and personal health parameters.
Collapse
Affiliation(s)
- Emre Ozan Polat
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Istanbul 34083, Turkey; (M.M.C.); (A.F.T.); (E.B.G.); (B.Ö.U.); (T.A.); (A.K.); (H.H.); (S.B.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hong C, Wang J, Wang Y, Huang Z, Yang H, Yang D, Cai R, Tan W. Fluorescence detection of milk allergen β-lactoglobulin based on aptamers and WS 2 nanosheets. J Mater Chem B 2022; 10:6752-6757. [PMID: 35403657 DOI: 10.1039/d2tb00263a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Lactoglobulin (β-Lg), a food allergen, can easily cause allergic reactions in infants and young children. Therefore, it is necessary to develop a rapid, sensitive, and selective detection method to protect individuals prone to allergies. In this paper, a fluorescence assay based on WS2 nanosheets and a fluorescent dye (FAM)-labeled β-Lg aptamer was designed to detect β-Lg rapidly with high sensitivity. In the sensing platform, the β-Lg aptamer is adsorbed on the WS2 nanosheet surface by van der Waals forces, which trigger the phenomenon of fluorescence resonance energy transfer (FRET) and suppress the fluorescence signal in the system. When β-Lg is present, the conformation of the aptamer specifically bound to β-Lg changes. Therefore, the aptamer is separated from the WS2 nanosheet surface, and the fluorescence signal is recovered. This method combines the high quenching efficiency of WS2 nanosheets and good specificity of the β-Lg aptamer. The detection range of this method for β-Lg is 0.1-100 μg mL-1. The detection limit is 20.4 ng mL-1. This method exhibits high sensitivity, selectivity and good reproducibility, and it can be used for β-Lg detection in actual samples.
Collapse
Affiliation(s)
- Chengyi Hong
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, China
| | - Jingjing Wang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, China
| | - Yuying Wang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, China
| | - Zhiyong Huang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, China
| | - Hongfen Yang
- University of Texas at Austin, Austin, TX 78712, USA.
| | - Dan Yang
- RMIT University, Melbourne, Australia
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| |
Collapse
|
15
|
Hong SP, Mohd‐Naim NF, Keasberry NA, Ahmed MU. Electrochemical Detection of β‐Lactoglobulin Allergen Using Titanium Dioxide/Carbon Nanochips/Gold Nanocomposite‐based Biosensor. ELECTROANAL 2022. [DOI: 10.1002/elan.202100207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shyang Pei Hong
- Biosensors and Nanobiotechnology Laboratory Integrated Science Building Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd‐Naim
- PAPRSB Institute of Health Sciences Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Natasha Ann Keasberry
- Biosensors and Nanobiotechnology Laboratory Integrated Science Building Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory Integrated Science Building Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
16
|
Kurup CP, Mohd-Naim NF, Ahmed MU. A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor. Mikrochim Acta 2022; 189:165. [PMID: 35355134 DOI: 10.1007/s00604-022-05275-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/10/2022] [Indexed: 01/16/2023]
Abstract
An electrochemiluminescence (ECL) aptasensor for the detection of the milk protein allergen β-lactoglobulin (β-LG) using nanocomposite as luminophore was fabricated. The Ru-AuNPs/GNP/Naf complex was formed by combining the Rubpy32+-AuNPs complex (Ru-AuNPs), prepared by modifying the negatively charged surface of gold nanoparticles (AuNPs) with positively charged Rubpy32+ through electrostatic interactions and the graphene nanoplatelets-Nafion (GNP/Naf) at a ratio of 2:1. The nanocomposite was coated on the surface of the screen-printed electrode (SPCE) through the film-forming properties of Nafion. A layer of chitosan (CS) was coated onto this modified electrode, and later amine-terminated β-LG aptamers were covalently attached to the CS/Ru-AuNP/GNP/Naf via glutaraldehyde (GLUT) cross-linking. When β-LG was incubated with the aptasensor, a subsequent decrease in ECL intensity was recorded. Under the optimal conditions, the ECL intensity of the aptasensor changed linearly with the logarithmic concentration of β-LG, in the range 0.1 to 1000 pg/ml, and the detection limit was 0.02 pg/mL (3σ/m). The constructed aptasensor displayed simple and fast determination of β-LG with excellent reproducibility, stability, and high specificity. Additionally, the proposed ECL aptasensor displayed high recoveries (92.5-112%) and low coefficients of variation (1.6-7.8%), when β-LG fortified samples were analyzed. Integrating Ru-AuNPs/GNP/Naf nanocomposite in the ECL aptasensor paves the way towards a cost-effective and sensitive detection of the milk allergen β-LG.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam.
| |
Collapse
|
17
|
Food Allergies: Immunosensors and Management. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Food allergies (FA) are commonly depicted as immune responses. The mechanism of allergic reactions involves immunoglobulin E (IgE) and non-immunoglobulin E (non-IgE)-related responses caused by contact with specific foods. FAs can be fatal, have negative effects and have become the subject of fanaticism in recent years. In terms of food safety, allergic compounds have become a problem. The immune response to allergens is different to that from food intolerance, pharmacological reactions, and poisoning. The most important allergenic foods are soybeans, milk, eggs, groundnuts, shellfishes, tree nuts, cereals and fish, which together are known as the “Big Eight”. This review will introduce and discuss FAs in milk, peanuts, nuts, shellfishes, eggs and wheat and their detections and potential treatments will also be provided. We believe that this review may provide important information regarding food-induced allergies for children who have allergic reactions and help them avoid the allergenic food in the future.
Collapse
|
18
|
Zhang X, Li G, Liu J, Su Z. Bio-inspired Nanoenzyme Synthesis and Its Application in A Portable Immunoassay for Food Allergy Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14751-14760. [PMID: 34523915 DOI: 10.1021/acs.jafc.1c04309] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozymes as a cost-effective and robust enzyme mimic have attracted widespread attention in the development of novel analytical methods. Herein, a new nanozyme-enhanced surface-enhanced Raman scattering (SERS) immunoassay platform was successfully developed using a peroxidase-mimicking nanozyme to replace the natural enzymes as a catalytic label of the enzyme-linked immunosorbent assay for the detection of allergy proteins. In this platform, the peroxidase-mimicking nanozymes as a catalytic label could catalyze the oxidation of the Raman-inactive reporter [i.e., leucomalachite green (LMG)] to generate Raman-active malachite green (MG) with H2O2. Moreover, the produced MG Raman signal was further enhanced by the formed Raman "hot spot" through MG-induced gold nanoparticle aggregation, which could be recorded by a portable Raman spectrometer. On this basis, the established nanozyme-enhanced SERS immunoassay showed improved accuracy, high sensitivity, and good selectivity and was used for accurate quantification of α-lactalbumin (α-LA). With this method, α-LA could be detected with a limit of detection as low as 0.01 ng/mL. Moreover, the method was also verified by performing in food samples and showed satisfactory recoveries and high reliability. This study not only provides insight into the use of a nanozyme to establish new analytical methods but also broadens the applications of nanozymes in a food safety assay.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Zhuoqun Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| |
Collapse
|
19
|
Qiu Q, Ni X, Liu T, Li Z, An X, Chen X. An electrochemical aptasensor for the milk allergen β-lactoglobulin detection based on a target-induced nicking site reconstruction strategy. Analyst 2021; 146:6808-6814. [PMID: 34647930 DOI: 10.1039/d1an01483h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Food allergy is an immune system reaction to a particular food, milk being the most common one. β-Lactoglobulin (β-Lg) is the main ingredient of milk protein and the main cause of infant milk allergy. On such an occasion, the determination of β-Lg is very important and the electrochemical sensors are a good alternative for this purpose since they are sensitive, selective and inexpensive. In this work, an electrochemical aptasensor was fabricated for the quantitative detection of β-Lg in hypoallergenic formula (HF) milk. A tri-functional hairpin (HP) was designed, which was composed of an aptamer sequence, a nicking site and a DNA sequence (T1). In the absence of β-Lg, the aptamer part hybridized with T1 to form a stable stem-loop structure. However, in the presence of β-Lg, the capture of the aptamer sequence towards β-Lg caused the reconstruction of HP and thus the nicking sites were exposed. Then, the nicking enzyme was activated and T1 could be released, which bound with the end of the hairpin 1-methylene blue (HP1-MB)/HP2-MB conjugation on the Au nanoparticle (AuNP) modified electrode surface. Thus, the insulating property of the electrode was enhanced and the current response of MB decreased, which built the quantitative basis for β-Lg detection. In this way, the proposed aptasensor exhibited a wide linear range of 0.01-100 ng mL-1 and a low detection limit of 5.7 pg mL-1. This aptasensor also displayed high selectivity, reproducibility and stability, and became a promising platform for β-Lg detection in real food samples.
Collapse
Affiliation(s)
- Qianying Qiu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Xiao Ni
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Tianchen Liu
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Zening Li
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Xinyi An
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, PR China
| |
Collapse
|
20
|
Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices. Foods 2021; 10:foods10112598. [PMID: 34828878 PMCID: PMC8623274 DOI: 10.3390/foods10112598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Food allergies have seriously affected the life quality of some people and even endangered their lives. At present, there is still no effective cure for food allergies. Avoiding the intake of allergenic food is still the most effective way to prevent allergic diseases. Therefore, it is necessary to develop rapid, accurate, sensitive, and reliable analysis methods to detect food allergens from different sources. Aptamers are oligonucleotide sequences that can bind to a variety of targets with high specificity and selectivity, and they are often combined with different transduction technologies, thereby constructing various types of aptamer sensors. In recent years, with the development of technology and the application of new materials, the sensitivity, portability, and cost of fluorescence sensing technology have been greatly improved. Therefore, aptamer-based fluorescence sensing technology has been widely developed and applied in the specific recognition of food allergens. In this paper, the classification of major allergens and their characteristics in animal and plant foods were comprehensively reviewed, and the preparation principles and practical applications of aptamer-based fluorescence biosensors are summarized. In addition, we hope that this article can provide some strategies for the rapid and sensitive detection of allergens in food matrices.
Collapse
|
21
|
Baghlaf MA, Eid NMS. Prevalence, Risk Factors, Clinical Manifestation, Diagnosis Aspects and Nutrition Therapy in Relation to both IgE and IgG Cow’s Milk Protein Allergies among a Population of Saudi Arabia: A Literature Review. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.2.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cow milk protein allergy (CMPA) becoming a major public health issue that has attracted the attention of health professionals and researchers. This paper aimed to review the important aspects of both IgE and IgG types of cow’s milk protein allergy in terms of prevalence, clinical manifestation, risk factors, other health-related issues and nutritional therapy proposed for such allergies in the adult and pediatric population in Saudi Arabia. A search on “cow’s milk allergy” was done using PubMed, Google Scholar and Scopus Engine for published papers between 1993 and 2020 to find studies yielding knowledge on that context. The prevalence of cow’s milk protein allergy (CMPA) among infants is now in the range of 2–3%. This type of allergy is also detected in adulthood but less frequently. CMPA is defined as an immunological reaction to specific proteins in milk. CMPA is classified based on its type as an immunoglobulin E (IgE)-mediated form and an immunoglobulin G (IgG)-mediated form, each type representing different immunological pathways. The presence of Genetic aspects, family history and short duration of breastfeeding in the infant are among the risk factors contributing to this form of allergy. Its manifestations mainly present as skin presentation, followed by the gastrointestinal and respiratory presentation in most cases in addition to a life-threatening anaphylactic reaction that may occur in 12% of cases. food allergy committees have developed strict diagnosis criteria, including blood testing for food-specific immunoglobulin E (sIgE), a skin prick test and double-blind placebo-controlled food challenges (DBPCFC) as the gold standard. A diet free of cow’s milk protein (CMP) allergen and including the appropriate alternative milk formula is the first line of prevention recommended by many organizations and food allergy experts. As for Saudi Arabia, more research and clinical trials are required to discuss the various aspects of adult and pediatric CMPA and to provide a better understanding along with good control strategies implementation.
Collapse
Affiliation(s)
- Mashail A Baghlaf
- 1Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura M S Eid
- 2Faculty of Applied Medical Sciences, Department of Clinical Nutrition, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Ferrari AGM, Crapnell RD, Banks CE. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. BIOSENSORS 2021; 11:291. [PMID: 34436093 PMCID: PMC8392528 DOI: 10.3390/bios11080291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.
Collapse
Affiliation(s)
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.G.-M.F.); (R.D.C.)
| |
Collapse
|
23
|
|
24
|
Khan MU, Lin H, Ahmed I, Chen Y, Zhao J, Hang T, Dasanayaka BP, Li Z. Whey allergens: Influence of nonthermal processing treatments and their detection methods. Compr Rev Food Sci Food Saf 2021; 20:4480-4510. [PMID: 34288394 DOI: 10.1111/1541-4337.12793] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022]
Abstract
Whey and its components are recognized as value-added ingredients in infant formulas, beverages, sports nutritious foods, and other food products. Whey offers opportunities for the food industrial sector to develop functional foods with potential health benefits due to its unique physiological and functional attributes. Despite all the above importance, the consumption of whey protein (WP) can trigger hypersensitive reactions and is a constant threat for sensitive individuals. Although avoiding such food products is the most successful approach, there is still a chance of incorrect labeling and cross-contamination during food processing. As whey allergens in food products are cross-reactive, the phenomenon of homologous milk proteins of various species may escalate to a more serious problem. In this review, nonthermal processing technologies used to prevent and eliminate WP allergies are presented and discussed in detail. These processing technologies can either enhance or mitigate the impact of potential allergenicity. Therefore, the development of highly precise analytical technologies to detect and quantify the existence of whey allergens is of considerable importance. The present review is an attempt to cover all the updated approaches used for the detection of whey allergens in processed food products. Immunological and DNA-based assays are generally used for detecting allergenic proteins in processed food products. In addition, mass spectrometry is also employed as a preliminary technique for detection. We also highlighted the latest improvements in allergen detection toward biosensing strategies particularly immunosensors and aptasensors.
Collapse
Affiliation(s)
- Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, No. 7 Panjiayuan Nanli, Beijing, Chaoyang, 100021, China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Tian Hang
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | | | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| |
Collapse
|
25
|
Curulli A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021; 26:2940. [PMID: 34063344 PMCID: PMC8156954 DOI: 10.3390/molecules26102940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
26
|
Xu J, Ye Y, Ji J, Sun J, Sun X. Advances on the rapid and multiplex detection methods of food allergens. Crit Rev Food Sci Nutr 2021; 62:6887-6907. [PMID: 33830835 DOI: 10.1080/10408398.2021.1907736] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
With the gradually increasing prevalence of food allergy in recent years, food allergy has become a major public health problem worldwide. The clinical symptoms caused by food allergy seriously affect people's quality of life; there are unknown allergen components in novel food and hidden allergens caused by cross contamination in food processing, which pose a serious risk to allergy sufferers. Thus, rapid and multiplex detection methods are required to achieve on-site detection or examination of allergic components, so as to identify the risk of allergy in time. This paper reviews the progress of high-efficiency detection of food allergens, including enhanced traditional detection techniques and emerging detection techniques with the ability high-throughput detection or screening potential food allergen, such as xMAP, biosensors, biochips, etc. focusing on their sensitivity, applicability of each method in food, along with their pretreatment, advantages, limitation in the application of food analysis. This paper also introduces the challenges faced by these high-efficiency detection technologies, as well as the potential of customized allergen screening methods and rapid on-site detection technology as future research directions.
Collapse
Affiliation(s)
- Jiayuan Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
27
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
28
|
Aquino A, Conte-Junior CA. A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection. BIOSENSORS-BASEL 2020; 10:bios10120194. [PMID: 33260424 PMCID: PMC7760337 DOI: 10.3390/bios10120194] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Several individuals will experience accidental exposure to an allergen. In this sense, the industry has invested in the processes of removing allergenic compounds in food. However, accidental exposure to allergenic proteins can result from allergenic substances not specified on labels. Analysis of allergenic foods is involved in methods based on immunological, genetic, and mass spectrometry. The traditional methods have some limitations, such as high cost. In recent years, biosensor and nanoparticles combined have emerged as sensitive, selective, low-cost, and time-consuming techniques that can replace classic techniques. Nevertheless, each nanomaterial has shown a different potential to specific allergens or classes. This review used Preferred Reporting Items for Systematic Reviews and the Meta-Analysis guidelines (PRISMA) to approach these issues. A total of 104 articles were retrieved from a standardized search on three databases (PubMed, Scopus and Web of Science). The systematic review article is organized by the category of allergen detection and nanoparticle detection. This review addresses the relevant biosensors and nanoparticles as gold, carbon, graphene, quantum dots to allergen protein detection. Among the selected articles it was possible to notice a greater potential application on the allergic proteins Ah, in peanuts and gold nanoparticle-base as a biosensor. We envision that in our review, the association between biosensor and nanoparticles has shown promise in the analysis of allergenic proteins present in different food samples.
Collapse
Affiliation(s)
- Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Correspondence: ; Tel.: +55-(21)-3938-7825
| |
Collapse
|
29
|
Han X, Cao M, Zhou B, Yu C, Liu Y, Peng B, Meng L, Wei JF, Li L, Huang W. Specifically immobilizing His-tagged allergens to magnetic nanoparticles for fast and quantitative detection of allergen-specific IgE in serum samples. Talanta 2020; 219:121301. [DOI: 10.1016/j.talanta.2020.121301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
|
30
|
Gollapalli RP. Enhanced sensitivity in graphene-based SPR biosensors using electrical bias. OPTICS LETTERS 2020; 45:2862-2865. [PMID: 32412487 DOI: 10.1364/ol.391504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
A theoretical framework to increase the sensitivity of graphene-based surface plasmon resonance (SPR) biosensors by the application of electrical bias voltage across the sensor surface is presented. Graphene layers deposited on thin gold film (50 nm) form the sensor surface system where the surface plasmon is excited. The real and imaginary parts of the refractive index of this gold-graphene system can be controlled by tuning its chemical potential using electrical modulation. Numerical calculations show a promising method to enhance the sensitivity of graphene-based SPR biosensors.
Collapse
|