1
|
Romero-Murillo P, Gallego JL, Leignel V. Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. TOXICS 2023; 11:631. [PMID: 37505596 PMCID: PMC10385514 DOI: 10.3390/toxics11070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Coastal zones sustain extensive biodiversity, support key processes for ocean dynamics, and influence the balance of the global environment. They also provide resources and services to communities, determine their culture, and are the basis for their economic growth. Cartagena Bay in the Colombian Caribbean is the place of the establishment of one of the country's main cities, which has a great historical and tourist attraction, and it is also the location of the main commercial port and a great variety of industries. Historically, it has been affected by several environmental impacts and intense pollution. This situation has gained the attention of different researchers, so herein is presented a literature review with a systematic approach using RStudio's bibliometrix on the presence of pollutants and the impact on biodiversity in recent decades, providing a critical analysis of the state of Cartagena Bay and its future needs to ensure its recovery and conservation. In addition, the socioeconomic dynamics related to the environmental state of Cartagena Bay are presented from the framework drivers, pressures, status, impacts, and responses (DPSIR). The update and critical understanding of the sources, fate, and effects of pollution are important not only for the knowledge of the status of this singular ecosystem but also to encourage future research and entrench evidence to support decision makers' actions. This review highlights that several pollutants that have been detected exceeding sediment quality guidelines, like As, Cd, Hg, and PAH, are also reported to bioaccumulate and cause damage throughout the trophic levels of the coastal environment. In addition, the potential use of sentinel species and biomarkers for their monitoring is discussed. Finally, the factors that cause pollution and threaten the state of the bay continue to exert pressure and impact; thus, there is a call for the further monitoring of this ecosystem and the strengthening of policies and regulations.
Collapse
Affiliation(s)
- Patricia Romero-Murillo
- Escuela de Biología Marina, Grupo de Investigación GIBEAM, Universidad del Sinú Seccional Cartagena, Av. El Bosque Trans, 54 N° 30-453 Santillana, Cartagena de Indias 130014, Colombia
| | - Jorge L Gallego
- Grupo de Investigaciones y Mediciones Ambientales GEMA, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 N° 30-65, Medellín 050026, Colombia
| | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Avenue O Messiaen, 72000 Le Mans, France
| |
Collapse
|
2
|
Image dataset for benchmarking automated fish detection and classification algorithms. Sci Data 2023; 10:5. [PMID: 36596792 PMCID: PMC9810604 DOI: 10.1038/s41597-022-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Multiparametric video-cabled marine observatories are becoming strategic to monitor remotely and in real-time the marine ecosystem. Those platforms can achieve continuous, high-frequency and long-lasting image data sets that require automation in order to extract biological time series. The OBSEA, located at 4 km from Vilanova i la Geltrú at 20 m depth, was used to produce coastal fish time series continuously over the 24-h during 2013-2014. The image content of the photos was extracted via tagging, resulting in 69917 fish tags of 30 taxa identified. We also provided a meteorological and oceanographic dataset filtered by a quality control procedure to define real-world conditions affecting image quality. The tagged fish dataset can be of great importance to develop Artificial Intelligence routines for the automated identification and classification of fishes in extensive time-lapse image sets.
Collapse
|
3
|
Marini S, Bonofiglio F, Corgnati LP, Bordone A, Schiaparelli S, Peirano A. Long‐term Automated Visual Monitoring of Antarctic Benthic Fauna. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simone Marini
- National Research Council of Italy (CNR) Institute of Marine Sciences La Spezia 19132 Italy
- Stazione Zoologica Anton Dohrn Naples 80121 Italy
| | - Federico Bonofiglio
- National Research Council of Italy (CNR) Institute of Marine Sciences La Spezia 19132 Italy
| | - Lorenzo P. Corgnati
- National Research Council of Italy (CNR) Institute of Marine Sciences La Spezia 19132 Italy
| | - Andrea Bordone
- ENEA‐Marine Environment Research Centre La Spezia 19132 Italy
| | - Stefano Schiaparelli
- DISTAV Università di Genova Genova 16132 Italy
- 5 MNA Italian National Antarctic Museum (Section of Genoa) Genoa 16132 Italy
| | - Andrea Peirano
- ENEA‐Marine Environment Research Centre La Spezia 19132 Italy
| |
Collapse
|
4
|
Underwater Hyperspectral Imaging (UHI): A Review of Systems and Applications for Proximal Seafloor Ecosystem Studies. REMOTE SENSING 2021. [DOI: 10.3390/rs13173451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Marine ecosystem monitoring requires observations of its attributes at different spatial and temporal scales that traditional sampling methods (e.g., RGB imaging, sediment cores) struggle to efficiently provide. Proximal optical sensing methods can fill this observational gap by providing observations of, and tracking changes in, the functional features of marine ecosystems non-invasively. Underwater hyperspectral imaging (UHI) employed in proximity to the seafloor has shown a further potential to monitor pigmentation in benthic and sympagic phototrophic organisms at small spatial scales (mm–cm) and for the identification of minerals and taxa through their finely resolved spectral signatures. Despite the increasing number of studies applying UHI, a review of its applications, capabilities, and challenges for seafloor ecosystem research is overdue. In this review, we first detail how the limited band availability inherent to standard underwater cameras has led to a data analysis “bottleneck” in seafloor ecosystem research, in part due to the widespread implementation of underwater imaging platforms (e.g., remotely operated vehicles, time-lapse stations, towed cameras) that can acquire large image datasets. We discuss how hyperspectral technology brings unique opportunities to address the known limitations of RGB cameras for surveying marine environments. The review concludes by comparing how different studies harness the capacities of hyperspectral imaging, the types of methods required to validate observations, and the current challenges for accurate and replicable UHI research.
Collapse
|
5
|
Mirimin L, Desmet S, Romero DL, Fernandez SF, Miller DL, Mynott S, Brincau AG, Stefanni S, Berry A, Gaughan P, Aguzzi J. Don't catch me if you can - Using cabled observatories as multidisciplinary platforms for marine fish community monitoring: An in situ case study combining Underwater Video and environmental DNA data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145351. [PMID: 33940724 DOI: 10.1016/j.scitotenv.2021.145351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/07/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Cabled observatories are marine infrastructures equipped with biogeochemical and oceanographic sensors as well as High-Definition video and audio equipment, hence providing unprecedented opportunities to study marine biotic and abiotic components. Additionally, non-invasive monitoring approaches such as environmental DNA (eDNA) metabarcoding have further enhanced the ability to characterize marine life. Although the use of non-invasive tools beholds great potential for the sustainable monitoring of biodiversity and declining natural resources, such techniques are rarely used in parallel and understanding their limitations is challenging. Thus, this study combined Underwater Video (UV) with eDNA metabarcoding data to produce marine fish community profiles over a 2 months period in situ at a cabled observatory in the northeast Atlantic (SmartBay Ireland). By combining both approaches, an increased number of fish could be identified to the species level (total of 22 species), including ecologically and economically important species such as Atlantic cod, whiting, mackerel and monkfish. The eDNA approach alone successfully identified a higher number of species (59%) compared to the UV approach (18%), whereby 23% of species were detected by both methods. The parallel implementation of point collection eDNA and time series UV data not only confirmed expectations of the corroborative effect of using multiple disciplines in fish community composition, but also enabled the assessment of limitations intrinsic to each technique including the identification of false-negative detections in one sampling technology relative to the other. This work showcased the usefulness of cabled observatories as key platforms for in situ empirical assessment of both challenges and prospects of novel technologies in aid to future monitoring of marine life.
Collapse
Affiliation(s)
- Luca Mirimin
- Marine and Freshwater Research Centre, Dublin Road, H91 T8NW Galway, Ireland; Galway-Mayo Institute of Technology, School of Science and Computing, Department of Natural Sciences, Dublin Road, H91 T8NW Galway, Ireland.
| | - Sam Desmet
- Marine and Freshwater Research Centre, Dublin Road, H91 T8NW Galway, Ireland; Galway-Mayo Institute of Technology, School of Science and Computing, Department of Natural Sciences, Dublin Road, H91 T8NW Galway, Ireland
| | | | - Sara Fernandez Fernandez
- Marine and Freshwater Research Centre, Dublin Road, H91 T8NW Galway, Ireland; Galway-Mayo Institute of Technology, School of Science and Computing, Department of Natural Sciences, Dublin Road, H91 T8NW Galway, Ireland
| | - Dulaney L Miller
- Marine and Freshwater Research Centre, Dublin Road, H91 T8NW Galway, Ireland; Galway-Mayo Institute of Technology, School of Science and Computing, Department of Natural Sciences, Dublin Road, H91 T8NW Galway, Ireland
| | - Sebastian Mynott
- Applied Genomics Ltd, Brixham Environmental Laboratory, Freshwater Quarry, Brixham TQ5 8BA, United Kingdom
| | - Alejandro Gonzalez Brincau
- Applied Genomics Ltd, Brixham Environmental Laboratory, Freshwater Quarry, Brixham TQ5 8BA, United Kingdom
| | | | - Alan Berry
- Marine Institute, Ocean Science and Information Services, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Paul Gaughan
- Marine Institute, Ocean Science and Information Services, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Jacopo Aguzzi
- Institut de Ciencias del Mar (ICM-CSIC), Barcelona, Spain; Stazione Zoologica Anton Dohrn (SZN), Naples, Italy.
| |
Collapse
|
6
|
Aguzzi J, Costa C, Calisti M, Funari V, Stefanni S, Danovaro R, Gomes HI, Vecchi F, Dartnell LR, Weiss P, Nowak K, Chatzievangelou D, Marini S. Research Trends and Future Perspectives in Marine Biomimicking Robotics. SENSORS (BASEL, SWITZERLAND) 2021; 21:3778. [PMID: 34072452 PMCID: PMC8198061 DOI: 10.3390/s21113778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Mechatronic and soft robotics are taking inspiration from the animal kingdom to create new high-performance robots. Here, we focused on marine biomimetic research and used innovative bibliographic statistics tools, to highlight established and emerging knowledge domains. A total of 6980 scientific publications retrieved from the Scopus database (1950-2020), evidencing a sharp research increase in 2003-2004. Clustering analysis of countries collaborations showed two major Asian-North America and European clusters. Three significant areas appeared: (i) energy provision, whose advancement mainly relies on microbial fuel cells, (ii) biomaterials for not yet fully operational soft-robotic solutions; and finally (iii), design and control, chiefly oriented to locomotor designs. In this scenario, marine biomimicking robotics still lacks solutions for the long-lasting energy provision, which presently hinders operation autonomy. In the research environment, identifying natural processes by which living organisms obtain energy is thus urgent to sustain energy-demanding tasks while, at the same time, the natural designs must increasingly inform to optimize energy consumption.
Collapse
Affiliation(s)
- Jacopo Aguzzi
- Department of Renewable Marine Resources, Instituto de Ciencias del Mar (ICM-CSIC), 08003 Barcelona, Spain
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
| | - Corrado Costa
- Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), 00015 Rome, Italy
| | - Marcello Calisti
- The BioRobotics Institute, Scuola Superiore Sant’Anna (SSAA), 56127 Pisa, Italy;
- Lincoln Institute for Agri-food Technology (LIAT), University of Lincoln, Lincoln LN6 7TS, UK
| | - Valerio Funari
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR), 40129 Bologna, Italy
| | - Sergio Stefanni
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
- Department of Life and Environmental Science, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Helena I. Gomes
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Fabrizio Vecchi
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
| | - Lewis R. Dartnell
- School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | | | - Kathrin Nowak
- Compagnie Maritime d’Expertises (COMEX), 13275 Marseille, France;
| | | | - Simone Marini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR), 19032 La Spezia, Italy;
| |
Collapse
|
7
|
An Automated Pipeline for Image Processing and Data Treatment to Track Activity Rhythms of Paragorgia arborea in Relation to Hydrographic Conditions. SENSORS 2020; 20:s20216281. [PMID: 33158174 PMCID: PMC7662914 DOI: 10.3390/s20216281] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022]
Abstract
Imaging technologies are being deployed on cabled observatory networks worldwide. They allow for the monitoring of the biological activity of deep-sea organisms on temporal scales that were never attained before. In this paper, we customized Convolutional Neural Network image processing to track behavioral activities in an iconic conservation deep-sea species—the bubblegum coral Paragorgia arborea—in response to ambient oceanographic conditions at the Lofoten-Vesterålen observatory. Images and concomitant oceanographic data were taken hourly from February to June 2018. We considered coral activity in terms of bloated, semi-bloated and non-bloated surfaces, as proxy for polyp filtering, retraction and transient activity, respectively. A test accuracy of 90.47% was obtained. Chronobiology-oriented statistics and advanced Artificial Neural Network (ANN) multivariate regression modeling proved that a daily coral filtering rhythm occurs within one major dusk phase, being independent from tides. Polyp activity, in particular extrusion, increased from March to June, and was able to cope with an increase in chlorophyll concentration, indicating the existence of seasonality. Our study shows that it is possible to establish a model for the development of automated pipelines that are able to extract biological information from times series of images. These are helpful to obtain multidisciplinary information from cabled observatory infrastructures.
Collapse
|
8
|
ENDURUNS: An Integrated and Flexible Approach for Seabed Survey Through Autonomous Mobile Vehicles. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8090633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oceans cover more than two-thirds of the planet, representing the vastest part of natural resources. Nevertheless, only a fraction of the ocean depths has been explored. Within this context, this article presents the H2020 ENDURUNS project that describes a novel scientific and technological approach for prolonged underwater autonomous operations of seabed survey activities, either in the deep ocean or in coastal areas. The proposed approach combines a hybrid Autonomous Underwater Vehicle capable of moving using either thrusters or as a sea glider, combined with an Unmanned Surface Vehicle equipped with satellite communication facilities for interaction with a land station. Both vehicles are equipped with energy packs that combine hydrogen fuel cells and Li-ion batteries to provide extended duration of the survey operations. The Unmanned Surface Vehicle employs photovoltaic panels to increase the autonomy of the vehicle. Since these missions generate a large amount of data, both vehicles are equipped with onboard Central Processing units capable of executing data analysis and compression algorithms for the semantic classification and transmission of the acquired data.
Collapse
|
9
|
Fanelli E, Aguzzi J, Marini S, del Rio J, Nogueras M, Canese S, Stefanni S, Danovaro R, Conversano F. Towards Naples Ecological REsearch for Augmented Observatories (NEREA): The NEREA-Fix Module, a Stand-Alone Platform for Long-Term Deep-Sea Ecosystem Monitoring. SENSORS 2020; 20:s20102911. [PMID: 32455611 PMCID: PMC7285156 DOI: 10.3390/s20102911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Deep-sea ecological monitoring is increasingly recognized as indispensable for the comprehension of the largest biome on Earth, but at the same time it is subjected to growing human impacts for the exploitation of biotic and abiotic resources. Here, we present the Naples Ecological REsearch (NEREA) stand-alone observatory concept (NEREA-fix), an integrated observatory with a modular, adaptive structure, characterized by a multiparametric video-platform to be deployed in the Dohrn canyon (Gulf of Naples, Tyrrhenian Sea) at ca. 650 m depth. The observatory integrates a seabed platform with optoacoustic and oceanographic/geochemical sensors connected to a surface transmission buoy, plus a mooring line (also equipped with depth-staged environmental sensors). This reinforced high-frequency and long-lasting ecological monitoring will integrate the historical data conducted over 40 years for the Long-Term Ecological Research (LTER) at the station “Mare Chiara”, and ongoing vessel-assisted plankton (and future environmental DNA-eDNA) sampling. NEREA aims at expanding the observational capacity in a key area of the Mediterranean Sea, representing a first step towards the establishment of a bentho-pelagic network to enforce an end-to-end transdisciplinary approach for the monitoring of marine ecosystems across a wide range of animal sizes (from bacteria to megafauna).
Collapse
Affiliation(s)
- Emanuela Fanelli
- Department of Life and Environmental Science, Polytechnic University of Marche, 60131 Ancona, Italy;
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (J.A.); (S.M.); (S.C.); (S.S.); (F.C.)
- Correspondence:
| | - Jacopo Aguzzi
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (J.A.); (S.M.); (S.C.); (S.S.); (F.C.)
- Instituto de Ciencias del Mar, CSIC, 08003 Barcelona, Spain
| | - Simone Marini
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (J.A.); (S.M.); (S.C.); (S.S.); (F.C.)
- Institute of Marine Sciences, CNR, 19032 La Spezia, Italy
| | - Joaquin del Rio
- SARTI Research Group, Electronics Department, Universitat Politècnica de Catalunya, 08800 Vilanova i la Gertru, Spain; (J.d.R.); (M.N.)
| | - Marc Nogueras
- SARTI Research Group, Electronics Department, Universitat Politècnica de Catalunya, 08800 Vilanova i la Gertru, Spain; (J.d.R.); (M.N.)
| | - Simonepietro Canese
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (J.A.); (S.M.); (S.C.); (S.S.); (F.C.)
| | - Sergio Stefanni
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (J.A.); (S.M.); (S.C.); (S.S.); (F.C.)
| | - Roberto Danovaro
- Department of Life and Environmental Science, Polytechnic University of Marche, 60131 Ancona, Italy;
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (J.A.); (S.M.); (S.C.); (S.S.); (F.C.)
| | - Fabio Conversano
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (J.A.); (S.M.); (S.C.); (S.S.); (F.C.)
| |
Collapse
|
10
|
Bahamon N, Aguzzi J, Ahumada-Sempoal MÁ, Bernardello R, Reuschel C, Company JB, Peters F, Gordoa A, Navarro J, Velásquez Z, Cruzado A. Stepped Coastal Water Warming Revealed by Multiparametric Monitoring at NW Mediterranean Fixed Stations. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2658. [PMID: 32384795 PMCID: PMC7248696 DOI: 10.3390/s20092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 11/24/2022]
Abstract
Since 2014, the global land and sea surface temperature has scaled 0.23 °C above the decadal average (2009-2018). Reports indicate that Mediterranean Sea temperatures have been rising at faster rates than in the global ocean. Oceanographic time series of physical and biogeochemical data collected from an onboard and a multisensor mooring array in the northwestern Mediterranean Sea (Blanes submarine canyon, Balearic Sea) during 2009-2018 revealed an abrupt temperature rising since 2014, in line with regional and global warming. Since 2014, the oligotrophic conditions of the water column have intensified, with temperature increasing 0.61 °C on the surface and 0.47 °C in the whole water column in continental shelf waters. Water transparency has increased due to a decrease in turbidity anomaly of -0.1 FTU. Since 2013, inshore chlorophyll a concentration remained below the average (-0.15 mg·l-1) and silicates showed a declining trend. The mixed layer depth showed deepening in winter and remained steady in summer. The net surface heat fluxes did not show any trend linked to the local warming, probably due to the influence of incoming offshore waters produced by the interaction between the Northern Current and the submarine canyon. Present regional and global water heating pattern is increasing the stress of highly diverse coastal ecosystems at unprecedented levels, as reported by the literature. The strengthening of the oligotrophic conditions in the study area may also apply as a cautionary warning to similar coastal ecosystems around the world following the global warming trend.
Collapse
Affiliation(s)
- Nixon Bahamon
- Instituto de Ciencias del Mar–CSIC, 08003 Barcelona, Spain; (J.A.); (J.B.C.); (F.P.); (J.N.)
- Centro de Estudios Avanzados de Blanes–CSIC, 17300 Blanes, Spain;
| | - Jacopo Aguzzi
- Instituto de Ciencias del Mar–CSIC, 08003 Barcelona, Spain; (J.A.); (J.B.C.); (F.P.); (J.N.)
- Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| | | | - Raffaele Bernardello
- Department of Earth Sciences, Barcelona Supercomputing Center, 08034 Barcelona, Spain;
| | - Charlotte Reuschel
- Department of Chemistry and Biology, Hochschule Fresenius University of Applied Sciences, 65510 Idstein, Germany;
| | - Joan Baptista Company
- Instituto de Ciencias del Mar–CSIC, 08003 Barcelona, Spain; (J.A.); (J.B.C.); (F.P.); (J.N.)
| | - Francesc Peters
- Instituto de Ciencias del Mar–CSIC, 08003 Barcelona, Spain; (J.A.); (J.B.C.); (F.P.); (J.N.)
| | - Ana Gordoa
- Centro de Estudios Avanzados de Blanes–CSIC, 17300 Blanes, Spain;
| | - Joan Navarro
- Instituto de Ciencias del Mar–CSIC, 08003 Barcelona, Spain; (J.A.); (J.B.C.); (F.P.); (J.N.)
| | - Zoila Velásquez
- Oceans Catalonia International SL, 17300 Blanes, Spain; (Z.V.); (A.C.)
| | - Antonio Cruzado
- Oceans Catalonia International SL, 17300 Blanes, Spain; (Z.V.); (A.C.)
| |
Collapse
|