1
|
Mehta D, Gupta D, Kafle A, Kaur S, Nagaiah TC. Advances and Challenges in Nanomaterial-Based Electrochemical Immunosensors for Small Cell Lung Cancer Biomarker Neuron-Specific Enolase. ACS OMEGA 2024; 9:33-51. [PMID: 38222505 PMCID: PMC10785636 DOI: 10.1021/acsomega.3c06388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Early and rapid detection of neuron-specific enolase (NSE) is highly significant, as it is putative biomarker for small-cell lung cancer as well as COVID-19. Electrochemical techniques have attracted substantial attention for the early detection of cancer biomarkers due to the important properties of simplicity, high sensitivity, specificity, low cost, and point-of-care detection. This work reviews the clinically relevant labeled and label-free electrochemical immunosensors developed so far for the analysis of NSE. The prevailing role of nanostructured materials as electrode matrices is thoroughly discussed. Subsequently, the key performances of various immunoassays are critically evaluated in terms of limit of detection, linear ranges, and incubation time for clinical translation. Electrochemical techniques coupled with screen-printed electrodes developing market level commercialization of NSE sensors is also discussed. Finally, the review concludes with the current challenges associated with available methods and provides a future outlook toward commercialization opportunities for easy detection of NSE.
Collapse
Affiliation(s)
- Daisy Mehta
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Divyani Gupta
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Alankar Kafle
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sukhjot Kaur
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Tharamani C. Nagaiah
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
2
|
Kiio LK, Onyatta JO, Ndangili PM, Oloo F, Santamaria C, Montuenga LM, Mbui DN. Ultrasensitive immunosensor for multiplex detection of cancer biomarkers carcinoembryonic antigen (CEA) and yamaguchi sarcoma viral oncogene homolog 1 (YES1) based on eco-friendly synthesized gold nanoparticles. Talanta 2024; 266:124934. [PMID: 37454512 DOI: 10.1016/j.talanta.2023.124934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Cancer is one of the most extensive diseases with the highest mortality rate, accounting for almost 10 million deaths in 2020. The most common cancers are breast, lung, colon and rectum and prostate cancers. Of these, lung cancer, accounted for about 1.8 million of all cancer deaths (25%) in 2020. Detection of cancer relies on presence of biomarkers such as DNA molecules, proteins and metabolites released by cancerous cells into the circulation. Carcinoembryonic antigen (CEA) is one of the biomarkers that has been used for the detection of lung cancer. However, CEA is not specific to lung cancer since it is also manifested in gastric cancer, pancreatic cancer, colorectal cancer, and breast cancer. Recently, v-YES1 Yamaguchi sarcoma viral oncogene homolog 1 (YES1) was described as a specific biomarker for lung cancer. The detection of both CEA and YES1 would give more precise and authentic information for detecting lung cancer. This is because detection of a single tumor marker usually limits the precision in tumor diagnosis, due to the fact that several cancers have more than one marker linked with their prevalence. Whereas traditional methods have been used for the detection of CEA, electrochemical immunosensors have attracted considerable attention owing to their profound advantages, including fast response, miniaturization, high selectivity, low sample requirements and magnificent sensitivity. The fabrication of a multiplex and simultaneous immunosensor is met with challenge of preparation of distinguishable immunoprobes with different redox activities. This can be addressed by incorporation of electroactive Nano metals into the sensing platform. In this study, gold nanoparticles were used for the fabrication of an ultrasensitive sandwich electrochemical multiplex immunosensor for simultaneous detection of CEA and YES1. Under optimized conditions, the electrochemical immunosensor detection limit for YES1 and CEA was found to be 0.0022 and 0.0034 ng/mL respectively within a linear range of 0.1-50 ng/mL. The proposed immunosensor proved to be stable for up to 2 weeks and had negligible cross reactivity towards various interfering compounds in human plasma. This study reports that gold nanoparticles can be bio synthesized using shade dried Mangifera indica leaves extract. The bio-synthesized gold nanoparticles coupled with thiolated protein G can be used for fabrication of a multiplex immunosensor for detection of CEA and YES1. The proposed immunosensor can provide a new approach for early diagnosis of circulating cancer biomarkers and holds great promise for application in clinical diagnosis.
Collapse
Affiliation(s)
- Lucia K Kiio
- Program in Solid Tumors, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008, Pamplona, Spain; Department of Chemistry, University of Nairobi, 30197-00100, Nairobi, Kenya; School of Chemistry and Material Science, The Technical University of Kenya, 52428-00200, Nairobi, Kenya.
| | - John O Onyatta
- Department of Chemistry, University of Nairobi, 30197-00100, Nairobi, Kenya.
| | - Peter M Ndangili
- School of Chemistry and Material Science, The Technical University of Kenya, 52428-00200, Nairobi, Kenya.
| | - Florence Oloo
- School of Chemistry and Material Science, The Technical University of Kenya, 52428-00200, Nairobi, Kenya.
| | - Carolina Santamaria
- BIOMA Center, Department of Chemistry, School of Sciences University of Navarra, 31008, Pamplona, Spain.
| | - Luis M Montuenga
- Program in Solid Tumors, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Health Research Institute (IDISNA), Pamplona, Spain.
| | - Damaris N Mbui
- Department of Chemistry, University of Nairobi, 30197-00100, Nairobi, Kenya.
| |
Collapse
|
3
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
4
|
Chen H, Zhang J, Huang R, Wang D, Deng D, Zhang Q, Luo L. The Applications of Electrochemical Immunosensors in the Detection of Disease Biomarkers: A Review. Molecules 2023; 28:molecules28083605. [PMID: 37110837 PMCID: PMC10144570 DOI: 10.3390/molecules28083605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Disease-related biomarkers may serve as indicators of human disease. The clinical diagnosis of diseases may largely benefit from timely and accurate detection of biomarkers, which has been the subject of extensive investigations. Due to the specificity of antibody and antigen recognition, electrochemical immunosensors can accurately detect multiple disease biomarkers, including proteins, antigens, and enzymes. This review deals with the fundamentals and types of electrochemical immunosensors. The electrochemical immunosensors are developed using three different catalysts: redox couples, typical biological enzymes, and nanomimetic enzymes. This review also focuses on the applications of those immunosensors in the detection of cancer, Alzheimer's disease, novel coronavirus pneumonia and other diseases. Finally, the future trends in electrochemical immunosensors are addressed in terms of achieving lower detection limits, improving electrode modification capabilities and developing composite functional materials.
Collapse
Affiliation(s)
- Huinan Chen
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialu Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rong Huang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dejia Wang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Didier CM, Orrico JF, Cepeda Torres OS, Castro JM, Baksh A, Rajaraman S. Microfabricated polymer-metal biosensors for multifarious data collection from electrogenic cellular models. MICROSYSTEMS & NANOENGINEERING 2023; 9:22. [PMID: 36875634 PMCID: PMC9974480 DOI: 10.1038/s41378-023-00488-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 05/28/2023]
Abstract
Benchtop tissue cultures have become increasingly complex in recent years, as more on-a-chip biological technologies, such as microphysiological systems (MPS), are developed to incorporate cellular constructs that more accurately represent their respective biological systems. Such MPS have begun facilitating major breakthroughs in biological research and are poised to shape the field in the coming decades. These biological systems require integrated sensing modalities to procure complex, multiplexed datasets with unprecedented combinatorial biological detail. In this work, we expanded upon our polymer-metal biosensor approach by demonstrating a facile technology for compound biosensing that was characterized through custom modeling approaches. As reported herein, we developed a compound chip with 3D microelectrodes, 3D microfluidics, interdigitated electrodes (IDEs) and a microheater. The chip was subsequently tested using the electrical/electrochemical characterization of 3D microelectrodes with 1 kHz impedance and phase recordings and IDE-based high-frequency (~1 MHz frequencies) impedimetric analysis of differential localized temperature recordings, both of which were modeled through equivalent electrical circuits for process parameter extraction. Additionally, a simplified antibody-conjugation strategy was employed for a similar IDE-based analysis of the implications of a key analyte (l-glutamine) binding to the equivalent electrical circuit. Finally, acute microfluidic perfusion modeling was performed to demonstrate the ease of microfluidics integration into such a polymer-metal biosensor platform for potential complimentary localized chemical stimulation. Overall, our work demonstrates the design, development, and characterization of an accessibly designed polymer-metal compound biosensor for electrogenic cellular constructs to facilitate comprehensive MPS data collection.
Collapse
Affiliation(s)
- Charles M. Didier
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL 32827 Orlando, USA
| | - Julia F. Orrico
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
| | - Omar S. Cepeda Torres
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Department of Biomedical Engineering, Polytechnic University of Puerto Rico, 377, 00918, Ponce de Leon, San Juan, Puerto Rico
| | - Jorge Manrique Castro
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Department of Electrical and Computer Engineering, University of Central Florida, 4238 Scorpius Street, FL 32816 Orlando, USA
| | - Aliyah Baksh
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
| | - Swaminathan Rajaraman
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL 32827 Orlando, USA
- Department of Electrical and Computer Engineering, University of Central Florida, 4238 Scorpius Street, FL 32816 Orlando, USA
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Drive, Engineering I, Suite 207, FL 32816 Orlando, USA
| |
Collapse
|
6
|
Martinez-Sade E, Martinez-Rojas F, Ramos D, Aguirre MJ, Armijo F. Formation of a Conducting Polymer by Different Electrochemical Techniques and Their Effect on Obtaining an Immunosensor for Immunoglobulin G. Polymers (Basel) 2023; 15:polym15051168. [PMID: 36904408 PMCID: PMC10007133 DOI: 10.3390/polym15051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In this work, a conducting polymer (CP) was obtained through three electrochemical procedures to study its effect on the development of an electrochemical immunosensor for the detection of immunoglobulin G (IgG-Ag) by square wave voltammetry (SWV). The glassy carbon electrode modified with poly indol-6-carboxylic acid (6-PICA) applied the cyclic voltammetry technique presented a more homogeneous size distribution of nanowires with greater adherence allowing the direct immobilization of the antibodies (IgG-Ab) to detect the biomarker IgG-Ag. Additionally, 6-PICA presents the most stable and reproducible electrochemical response used as an analytical signal for developing a label-free electrochemical immunosensor. The different steps in obtaining the electrochemical immunosensor were characterized by FESEM, FTIR, cyclic voltammetry, electrochemical impedance spectroscopy, and SWV. Optimal conditions to improve performance, stability, and reproducibility in the immunosensing platform were achieved. The prepared immunosensor has a linear detection range of 2.0-16.0 ng·mL-1 with a low detection limit of 0.8 ng·mL-1. The immunosensing platform performance depends on the orientation of the IgG-Ab, favoring the formation of the immuno-complex with an affinity constant (Ka) of 4.32 × 109 M-1, which has great potential to be used as point of care testing (POCT) device for the rapid detection of biomarkers.
Collapse
Affiliation(s)
- Erika Martinez-Sade
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Francisco Martinez-Rojas
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Danilo Ramos
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Maria Jesus Aguirre
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Química de Los Materiales, Faculta de Química y Biología, Universidad de Santiago de Chile, USACH, Av. L.B. O’Higgins 3363, Santiago 9170022, Chile
| | - Francisco Armijo
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
7
|
Alhazmi HA, Albratty M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals (Basel) 2023; 16:291. [PMID: 37259434 PMCID: PMC9967501 DOI: 10.3390/ph16020291] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 08/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a fast-growing class of biopharmaceuticals. They are widely used in the identification and detection of cell makers, serum analytes, and pathogenic agents, and are remarkably used for the cure of autoimmune diseases, infectious diseases, or malignancies. The successful application of therapeutic mAbs is based on their ability to precisely interact with their appropriate target sites. The precision of mAbs rely on the isolation techniques delivering pure, consistent, stable, and safe lots that can be used for analytical, diagnostic, or therapeutic applications. During the creation of a biologic, the key quality features of a particular mAb, such as structure, post-translational modifications, and activities at the biomolecular and cellular levels, must be characterized and profiled in great detail. This implies the requirement of powerful state of the art analytical techniques for quality control and characterization of mAbs. Until now, various analytical techniques have been developed to characterize and quantify the mAbs according to the regulatory guidelines. The present review summarizes the major techniques used for the analyses of mAbs which include chromatographic, electrophoretic, spectroscopic, and electrochemical methods in addition to the modifications in these methods for improving the quality of mAbs. This compilation of major analytical techniques will help students and researchers to have an overview of the methodologies employed by the biopharmaceutical industry for structural characterization of mAbs for eventual release of therapeutics in the drug market.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Singhal A, Singh A, Shrivastava A, Khan R. Epitope imprinted polymeric materials: application in electrochemical detection of disease biomarkers. J Mater Chem B 2023; 11:936-954. [PMID: 36606445 DOI: 10.1039/d2tb02135h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epitope imprinting is a promising method for creating specialized recognition sites that resemble natural biorecognition elements. Epitope-imprinted materials have gained a lot of attention recently in a variety of fields, including bioanalysis, drug delivery, and clinical therapy. The vast applications of epitope imprinted polymers are due to the flexibility in choosing monomers, the simplicity in obtaining templates, specificity toward targets, and resistance to harsh environments along with being cost effective in nature. The "epitope imprinting technique," which uses only a tiny subunit of the target as the template during imprinting, offers a way around various drawbacks inherent to biomacromolecule systems i.e., traditional molecular imprinting techniques with regards to the large size of proteins, such as the size, complexity, accessibility, and conformational flexibility of the template. Electrochemical based sensors are proven to be promising tool for the quick, real-time monitoring of biomarkers. This review unravels epitope imprinting techniques, approaches, and strategies and highlights the applicability of these techniques for the electrochemical quantification of biomarkers for timely disease monitoring. In addition, some challenges are discussed along with future prospective developments.
Collapse
Affiliation(s)
- Ayushi Singhal
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, MP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amrita Singh
- Department of Biotechnology, Barkatullah University, Habibganj, Bhopal, Madhya Pradesh 462026, India
| | - Apoorva Shrivastava
- Dr D. Y. Patil Biotechnology and Bioinformatics Institute, Dr D. Y. Patil Vidyapeeth, Sr. No. 87-88, Mumbai-Bangalore Highway, Tathawade, Pune, Maharashtra, 411033, India
| | - Raju Khan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, MP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
9
|
Ding Z, Zhang X, Li H. Application of IgG antibody titer and subtype in diagnosis and severity assessment of hemolytic disease of the newborn. Transl Pediatr 2022; 11:1544-1551. [PMID: 36247885 PMCID: PMC9561511 DOI: 10.21037/tp-22-385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To analyze the effect of different times of pregnancy of type O pregnant women on the occurrence of ABO hemolytic disease of the newborn (ABO-HDN). METHODS From December 2018 to December 2021, 725 pregnant women with O blood group (husbands with non-O blood group) who met the inclusion criteria were collected. There were 116 cases of ABO-HDN, which were summarized and analyzed. The pregnant women were divided into primigravida and non-primigravida groups. The influence of the number of pregnancies on the occurrence of ABO-HDN was compared, and the antibody titer of pregnant women with type O blood was monitored. The relationship between antibody titer and HDN in pregnant women was analyzed by hemolysis test and indirect bilirubin concentration. RESULTS In the primigravida group, 0 patients with HDN had a titer ≤1:64, 8 (8/26) had a titer of 1:128, 9 (9/20) had a titer of 1:256, 2 (2/4) had a titer of 1:512, and 2 (2/3) had a titer >1:512. In the non-primigravida group, there were 0 cases with a titer ≤1:64, 32 cases (32/78) with a titer of 1:128, and 26 cases (26/46) with a titer of 1:256. The number of cases of ABO incompatibility in maternal and infant groups with different titers of IgG anti-A (B) antibody were 377 cases in the <1:64 group, 130 cases in the 1:64 group, 104 cases in the 1:128 group, 66 cases in the 1:256 group, 32 cases in the 1:512 group, and 16 cases in the >1:512 group. The positive rates of ABO-HDN were 0.0% (0/0), 0.0% (0/0), 38.5% (40/104), 53.0% (35/66), 81.3% (26/32) and 93.8% (15/16), respectively, and the difference was statistically significant (P<0.05). CONCLUSIONS The occurrence of ABO-HDN was not significantly related to the blood type of the pregnant woman's husband. Therefore, in order to reduce the degree of hemolysis and avoid the occurrence of bilirubin encephalopathy or even death, pregnant women with antibody titer >1:64 in second or subsequent pregnancies should be closely monitored.
Collapse
Affiliation(s)
- Zijun Ding
- Department of Neonatology, Shanxi Provincial Children's Hospital, Taiyuan, China
| | - Xinhua Zhang
- Department of Neonatology, Shanxi Provincial Children's Hospital, Taiyuan, China
| | - Hai Li
- Department of Neonatology, Shanxi Provincial Children's Hospital, Taiyuan, China
| |
Collapse
|
10
|
Antibody–Ferrocene Conjugates as a Platform for Electro-Chemical Detection of Low-Density Lipoprotein. Molecules 2022; 27:molecules27175492. [PMID: 36080260 PMCID: PMC9458124 DOI: 10.3390/molecules27175492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Low-density lipoprotein (LDL) is a cardiac biomarker identified in the pathology of cardiovascular disease (CVD). Typically, the level of LDL is calculated using the Friedewald relationship based on measured values of total cholesterol, high-density lipoproteins (HDL), and triglycerides. Unfortunately, this approach leads to some errors in calculation. Therefore, direct methods that can be used for fast and accurate detection of LDL are needed. The purpose of this study was to develop an electrochemical platform for the detection of LDL based on an antibody–ferrocene conjugate. An anti-apolipoprotein B-100 antibody labeled with ferrocene was covalently immobilized on the layer of 4-aminothiophenol (4-ATP) on the surface of gold electrodes. Upon interaction between LDL and the antibody–ferrocene conjugate, a decrease in the ferrocene redox signal registered by square wave voltammetry was observed, which depends linearly on the concentration from 0.01 ng/mL to 1.0 ng/mL. The obtained limit of detection was equal to 0.53 ng/mL. Moreover, the satisfied selectivity toward human serum albumin (HSA), HDL, and malondialdehyde-modified low-density lipoprotein (MDA-LDL) was observed. In addition, the acceptable recovery rates of LDL in human serum samples indicate the possible application of immunosensors presented in clinical diagnostics.
Collapse
|
11
|
Parvin S, Hashemi P, Afkhami A, Ghanei M, Bagheri H. Simultaneous determination of BoNT/A and /E using an electrochemical sandwich immunoassay based on the nanomagnetic immunosensing platform. CHEMOSPHERE 2022; 298:134358. [PMID: 35307386 DOI: 10.1016/j.chemosphere.2022.134358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Developing new ultrasensitive assays for the detection of the presence, and determination of the serotype of the most poisonous material known i.e. botulinum neurotoxin (BoNT) is vital to human health and the wellbeing of the surrounding environment. Here, an electrochemical sandwich immunoassay with high sensitivity is adopted to achieve simultaneous determination of BoNT serotypes A and E based on polystyrene@polydopamine/Cd2+ and Ag nanoparticles acting as monoclonal antibody labels. Two well-separated peaks with strong electrochemical signals are generated by the labels, allowing for the simultaneous detection of two analytes existing on the electrode. To obtain well-oriented polyclonal antibodies immobilization, boronic acid is directly attached to the magnetic core/metal-organic framework (MOF) shell nanoagent surfaces without the requirement of a long and flexible spacer. Accordingly, it is possible to directly detect the metal ion labels through square wave voltammetry without the metal pre-concentration step. This results in distinct and well-defined voltammetric peaks, pertaining to each sandwich-type immunocomplexes. The limits of detection of BoNT/A and BoNT/E analyses were found to be 0.04 and 0.16 pg mL-1 with the linear dynamic ranges of 0.1-1000 and 0.5-1000 pg mL-1, respectively. Based on the obtained results, this immunosensor has the wide linear ranges, while also exhibiting low limits of detection along with good stability and reproducibility.
Collapse
Affiliation(s)
- Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Abstract
Electrochemical immunosensors are the largest class of affinity biosensing devices with strong practicability. In recent years, MXenes have become hotspot materials of electrochemical biosensors for their excellent properties, including large specific surface area, good electrical conductivity, high hydrophilicity and rich functional groups. In this review, we firstly introduce the composition and structure of MXenes, as well as their properties relevant to the construction of biosensors. Then, we summarize the recent advances of MXenes-based electrochemical immunosensors, focusing on the roles of MXenes in various electrochemical immunosensors. Finally, we analyze current problems of MXenes-based electrochemical immunosensors and propose an outlook for this research field.
Collapse
|
13
|
Hemamalini V, Anand L, Nachiyappan S, Geeitha S, Ramana Motupalli V, Kumar R, Ahilan A, Rajesh M. Integrating bio medical sensors in detecting hidden signatures of COVID-19 with Artificial intelligence. MEASUREMENT : JOURNAL OF THE INTERNATIONAL MEASUREMENT CONFEDERATION 2022; 194:111054. [PMID: 35368881 PMCID: PMC8957369 DOI: 10.1016/j.measurement.2022.111054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 05/20/2023]
Abstract
Today COVID-19 pandemic articulates high stress on clinical resources around the world. At present, physical and viral tests are slowly emerging, and there is a need for robust pandemic detection that biomedical sensors can aid. The utility of biomedical sensors is correlated with the medical instruments with physiological metrics. These Biomedical sensors are integrated with the systematic device to track the target analytes with a biomedical component. The COVID-19 patients' samples are collected, and biomarkers are detected using four sensors: blood pressure sensor, G-FET based biosensor, electrochemical sensor, and potentiometric sensor with different quantifiable measures. The imputed data is then profiled with chest X-ray images from the Covid-19 patients.Multi-Layer Perceptron (MLP), an AI model, is deployed to identify the hidden signatures with biomarkers. The performance of the biosensor is measured with three parameters such as sensitivity, specificity and detection limit by generating the calibration plots that accurately fits the model.
Collapse
Affiliation(s)
- V Hemamalini
- School Computing Science and Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - L Anand
- School Computing Science and Engineering SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - S Nachiyappan
- School of Computer Science and Engineering, VIT Chennai, India
| | - S Geeitha
- Department of Information Technology, M.Kumarasamy College of Engineering, Karur, India
| | - Venkata Ramana Motupalli
- Computer Science and Engineering, Annamacharya Institute of Technology and Sciences, Utukur, C. K. Dinne, Ysr kadapa, Andhra Pradesh, India
| | - R Kumar
- Department of Electronics and Instrumentation Engineering, National Institute of Technology Nagaland, India
| | - A Ahilan
- Department of Electronics and Communication, PSN College of Engineering and Technology, Tirunelveli, India
| | - M Rajesh
- Department of Computer Science Engineering, Sanjivani College of Engineering, Kopargaon, India
| |
Collapse
|
14
|
Baldina AA, Nikolaev KG, Ivanov AS, Nikitina AA, Rubtsova MY, Vorovitch MF, Ishmukhametov AA, Egorov AM, Skorb EV. Immunochemical biosensor for single virus particle detection based on molecular crowding polyelectrolyte system. J Appl Polym Sci 2022. [DOI: 10.1002/app.52360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anna A. Baldina
- Infochemistry Scientific Center ITMO University Saint Petersburg Russia
| | | | - Artemii S. Ivanov
- Infochemistry Scientific Center ITMO University Saint Petersburg Russia
| | - Anna A. Nikitina
- Infochemistry Scientific Center ITMO University Saint Petersburg Russia
| | - Maya Yu. Rubtsova
- Faculty of Chemistry M.V. Lomonosov Moscow State University Moscow Russia
| | - Mikhail F. Vorovitch
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences Federal State Budgetary Scientific Institution (FSBSI "Chumakov FSC R&D IBP RAS") Moscow Russia
- Institute for Translational Medicine and Biotechnology Sechenov First Moscow State Medical University Moscow Russia
| | - Aydar A. Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences Federal State Budgetary Scientific Institution (FSBSI "Chumakov FSC R&D IBP RAS") Moscow Russia
- Institute for Translational Medicine and Biotechnology Sechenov First Moscow State Medical University Moscow Russia
| | - Alex M. Egorov
- Faculty of Chemistry M.V. Lomonosov Moscow State University Moscow Russia
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences Federal State Budgetary Scientific Institution (FSBSI "Chumakov FSC R&D IBP RAS") Moscow Russia
| | | |
Collapse
|
15
|
Pérez DJ, Patiño EB, Orozco J. Electrochemical Nanobiosensors as Point‐of‐Care Testing Solution to Cytokines Measurement Limitations. ELECTROANAL 2021. [DOI: 10.1002/elan.202100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David J. Pérez
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Edwin B. Patiño
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
| |
Collapse
|
16
|
Metal Nanoparticle and Quantum Dot Tags for Signal Amplification in Electrochemical Immunosensors for Biomarker Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the increasing importance of healthcare and clinical diagnosis, as well as the growing demand for highly sensitive analytical instruments, immunosensors have received considerable attention. In this review, electrochemical immunosensor signal amplification strategies using metal nanoparticles (MNPs) and quantum dots (Qdots) as tags are overviewed, focusing on recent developments in the ultrasensitive detection of biomarkers. MNPs and Qdots can be used separately or in combination with other nanostructures, while performing the function of nanocarriers, electroactive labels, or catalysts. Thus, different functions of MNPs and Qdots as well as recent advances in electrochemical signal amplification are discussed. Additionally, the methods most often used for antibody immobilization on nanoparticles, immunoassay formats, and electrochemical methods for indirect biomarker detection are overviewed.
Collapse
|
17
|
|