1
|
Chan LLY, Yang S, Aswani M, Kark L, Henderson E, Lord SR, Brodie MA. Development, Validation, and Limits of Freezing of Gait Detection Using a Single Waist-Worn Device. IEEE Trans Biomed Eng 2024; 71:3024-3031. [PMID: 38814761 DOI: 10.1109/tbme.2024.3407059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Freezing of Gait (FOG) is prevalent in people with Parkinson's disease (PD) and severely disrupts mobility. Detecting the exact boundaries of FOG episodes may facilitate new technologies in "breaking" FOG in real-time. This study investigates the performance of automatic device-based FOG detection. METHODS Eight machine-learning classifiers (including Neural Networks, Ensemble methods, and Support Vector Machines) were developed using (i) accelerometer and (ii) combined accelerometer and gyroscope data from a waist-worn device. While wearing the device, 107 people with PD completed mobility tasks designed to elicit FOG. Two clinicians independently annotated exact FOG episodes using synchronized video and a flowchart algorithm based on international guidelines. Device-detected FOG episodes were compared to annotated episodes using 10-fold cross-validation and Interclass Correlation Coefficients (ICC) for agreement. RESULTS Development used 50,962 windows of data and annotated activities (>10 hours). Strong agreement between clinicians for precise FOG episodes was observed (90% sensitivity, 92% specificity, and ICC1,1 = 0.97 for total FOG duration). Device performance varied by method, complexity, and cost matrix. The Neural Network using 67 accelerometer features achieved high sensitivity to FOG (89% sensitivity, 81% specificity, and ICC1,1 = 0.83) and stability (validation loss 5%). CONCLUSION The waist-worn device consistently reported accurate detection of precise FOG episodes and compared well to more complex systems. The strong clinician agreement indicates room for improvement in future device-based FOG detection. SIGNIFICANCE This study may enhance PD care by reducing reliance on visual FOG inspection, demonstrating that high sensitivity in automatic FOG detection is achievable.
Collapse
|
2
|
Khalil RM, Shulman LM, Gruber-Baldini AL, Shakya S, Fenderson R, Van Hoven M, Hausdorff JM, von Coelln R, Cummings MP. Simplification of Mobility Tests and Data Processing to Increase Applicability of Wearable Sensors as Diagnostic Tools for Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2024; 24:4983. [PMID: 39124030 PMCID: PMC11314738 DOI: 10.3390/s24154983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Quantitative mobility analysis using wearable sensors, while promising as a diagnostic tool for Parkinson's disease (PD), is not commonly applied in clinical settings. Major obstacles include uncertainty regarding the best protocol for instrumented mobility testing and subsequent data processing, as well as the added workload and complexity of this multi-step process. To simplify sensor-based mobility testing in diagnosing PD, we analyzed data from 262 PD participants and 50 controls performing several motor tasks wearing a sensor on their lower back containing a triaxial accelerometer and a triaxial gyroscope. Using ensembles of heterogeneous machine learning models incorporating a range of classifiers trained on a set of sensor features, we show that our models effectively differentiate between participants with PD and controls, both for mixed-stage PD (92.6% accuracy) and a group selected for mild PD only (89.4% accuracy). Omitting algorithmic segmentation of complex mobility tasks decreased the diagnostic accuracy of our models, as did the inclusion of kinesiological features. Feature importance analysis revealed that Timed Up and Go (TUG) tasks to contribute the highest-yield predictive features, with only minor decreases in accuracy for models based on cognitive TUG as a single mobility task. Our machine learning approach facilitates major simplification of instrumented mobility testing without compromising predictive performance.
Collapse
Affiliation(s)
- Rana M. Khalil
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA;
| | - Lisa M. Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Ann L. Gruber-Baldini
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.L.G.-B.); (S.S.)
| | - Sunita Shakya
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.L.G.-B.); (S.S.)
| | - Rebecca Fenderson
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Maxwell Van Hoven
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6492416, Israel;
- Department of Physical Therapy, Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rainer von Coelln
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Michael P. Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
3
|
Elbatanouny H, Kleanthous N, Dahrouj H, Alusi S, Almajali E, Mahmoud S, Hussain A. Insights into Parkinson's Disease-Related Freezing of Gait Detection and Prediction Approaches: A Meta Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3959. [PMID: 38931743 PMCID: PMC11207947 DOI: 10.3390/s24123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's Disease (PD) is a complex neurodegenerative disorder characterized by a spectrum of motor and non-motor symptoms, prominently featuring the freezing of gait (FOG), which significantly impairs patients' quality of life. Despite extensive research, the precise mechanisms underlying FOG remain elusive, posing challenges for effective management and treatment. This paper presents a comprehensive meta-analysis of FOG prediction and detection methodologies, with a focus on the integration of wearable sensor technology and machine learning (ML) approaches. Through an exhaustive review of the literature, this study identifies key trends, datasets, preprocessing techniques, feature extraction methods, evaluation metrics, and comparative analyses between ML and non-ML approaches. The analysis also explores the utilization of cueing devices. The limited adoption of explainable AI (XAI) approaches in FOG prediction research represents a significant gap. Improving user acceptance and comprehension requires an understanding of the logic underlying algorithm predictions. Current FOG detection and prediction research has a number of limitations, which are identified in the discussion. These include issues with cueing devices, dataset constraints, ethical and privacy concerns, financial and accessibility restrictions, and the requirement for multidisciplinary collaboration. Future research avenues center on refining explainability, expanding and diversifying datasets, adhering to user requirements, and increasing detection and prediction accuracy. The findings contribute to advancing the understanding of FOG and offer valuable guidance for the development of more effective detection and prediction methodologies, ultimately benefiting individuals affected by PD.
Collapse
Affiliation(s)
- Hagar Elbatanouny
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | | | - Hayssam Dahrouj
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Sundus Alusi
- The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK;
| | - Eqab Almajali
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Soliman Mahmoud
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
- University of Khorfakkan, Khorfakkan, Sharjah 18119, United Arab Emirates
| | - Abir Hussain
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| |
Collapse
|
4
|
Salomon A, Gazit E, Ginis P, Urazalinov B, Takoi H, Yamaguchi T, Goda S, Lander D, Lacombe J, Sinha AK, Nieuwboer A, Kirsch LC, Holbrook R, Manor B, Hausdorff JM. A machine learning contest enhances automated freezing of gait detection and reveals time-of-day effects. Nat Commun 2024; 15:4853. [PMID: 38844449 PMCID: PMC11156937 DOI: 10.1038/s41467-024-49027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Freezing of gait (FOG) is a debilitating problem that markedly impairs the mobility and independence of 38-65% of people with Parkinson's disease. During a FOG episode, patients report that their feet are suddenly and inexplicably "glued" to the floor. The lack of a widely applicable, objective FOG detection method obstructs research and treatment. To address this problem, we organized a 3-month machine-learning contest, inviting experts from around the world to develop wearable sensor-based FOG detection algorithms. 1,379 teams from 83 countries submitted 24,862 solutions. The winning solutions demonstrated high accuracy, high specificity, and good precision in FOG detection, with strong correlations to gold-standard references. When applied to continuous 24/7 data, the solutions revealed previously unobserved patterns in daily living FOG occurrences. This successful endeavor underscores the potential of machine learning contests to rapidly engage AI experts in addressing critical medical challenges and provides a promising means for objective FOG quantification.
Collapse
Affiliation(s)
- Amit Salomon
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Pieter Ginis
- KU Leuven, Department of Rehabilitation Science, Neuromotor Rehabilitation Research Group (eNRGy), Leuven, Belgium
| | | | | | | | | | | | | | | | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation Science, Neuromotor Rehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Leslie C Kirsch
- Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | | | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, MA, Boston, USA
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Physical Therapy, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Orthopedic Surgery and Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
5
|
Yang PK, Filtjens B, Ginis P, Goris M, Nieuwboer A, Gilat M, Slaets P, Vanrumste B. Freezing of gait assessment with inertial measurement units and deep learning: effect of tasks, medication states, and stops. J Neuroeng Rehabil 2024; 21:24. [PMID: 38350964 PMCID: PMC10865632 DOI: 10.1186/s12984-024-01320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Freezing of gait (FOG) is an episodic and highly disabling symptom of Parkinson's Disease (PD). Traditionally, FOG assessment relies on time-consuming visual inspection of camera footage. Therefore, previous studies have proposed portable and automated solutions to annotate FOG. However, automated FOG assessment is challenging due to gait variability caused by medication effects and varying FOG-provoking tasks. Moreover, whether automated approaches can differentiate FOG from typical everyday movements, such as volitional stops, remains to be determined. To address these questions, we evaluated an automated FOG assessment model with deep learning (DL) based on inertial measurement units (IMUs). We assessed its performance trained on all standardized FOG-provoking tasks and medication states, as well as on specific tasks and medication states. Furthermore, we examined the effect of adding stopping periods on FOG detection performance. METHODS Twelve PD patients with self-reported FOG (mean age 69.33 ± 6.02 years) completed a FOG-provoking protocol, including timed-up-and-go and 360-degree turning-in-place tasks in On/Off dopaminergic medication states with/without volitional stopping. IMUs were attached to the pelvis and both sides of the tibia and talus. A temporal convolutional network (TCN) was used to detect FOG episodes. FOG severity was quantified by the percentage of time frozen (%TF) and the number of freezing episodes (#FOG). The agreement between the model-generated outcomes and the gold standard experts' video annotation was assessed by the intra-class correlation coefficient (ICC). RESULTS For FOG assessment in trials without stopping, the agreement of our model was strong (ICC (%TF) = 0.92 [0.68, 0.98]; ICC(#FOG) = 0.95 [0.72, 0.99]). Models trained on a specific FOG-provoking task could not generalize to unseen tasks, while models trained on a specific medication state could generalize to unseen states. For assessment in trials with stopping, the agreement of our model was moderately strong (ICC (%TF) = 0.95 [0.73, 0.99]; ICC (#FOG) = 0.79 [0.46, 0.94]), but only when stopping was included in the training data. CONCLUSION A TCN trained on IMU signals allows valid FOG assessment in trials with/without stops containing different medication states and FOG-provoking tasks. These results are encouraging and enable future work investigating automated FOG assessment during everyday life.
Collapse
Affiliation(s)
- Po-Kai Yang
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
- Intelligent Mobile Platforms Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
| | - Benjamin Filtjens
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
- Intelligent Mobile Platforms Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| | - Pieter Ginis
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Maaike Goris
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Alice Nieuwboer
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Moran Gilat
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Peter Slaets
- Intelligent Mobile Platforms Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| | - Bart Vanrumste
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| |
Collapse
|
6
|
Zhang W, Sun H, Huang D, Zhang Z, Li J, Wu C, Sun Y, Gong M, Wang Z, Sun C, Cui G, Guo Y, Chan P. Detection and prediction of freezing of gait with wearable sensors in Parkinson's disease. Neurol Sci 2024; 45:431-453. [PMID: 37843692 DOI: 10.1007/s10072-023-07017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/06/2023] [Indexed: 10/17/2023]
Abstract
Freezing of gait (FoG) is one of the most distressing symptoms of Parkinson's Disease (PD), commonly occurring in patients at middle and late stages of the disease. Automatic and accurate FoG detection and prediction have emerged as a promising tool for long-term monitoring of PD and implementation of gait assistance systems. This paper reviews the recent development of FoG detection and prediction using wearable sensors, with attention on identifying knowledge gaps that need to be filled in future research. This review searched the PubMed and Web of Science databases to collect studies that detect or predict FoG with wearable sensors. After screening, 89 of 270 articles were included. The data description, extracted features, detection/prediction methods, and classification performance were extracted from the articles. As the number of papers of this area is increasing, the performance has been steadily improved. However, small datasets and inconsistent evaluation processes still hinder the application of FoG detection and prediction with wearable sensors in clinical practice.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, Neurobiology and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hong Sun
- Department of Neurology, Neurobiology and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, 100053, China
- National Clinical Research Center of Geriatric Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Debin Huang
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China
| | - Zixuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Jinyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Chan Wu
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Yingying Sun
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Mengyi Gong
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Zhi Wang
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Chao Sun
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.
| | - Yuzhu Guo
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
| | - Piu Chan
- Department of Neurology, Neurobiology and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, 100053, China.
- National Clinical Research Center of Geriatric Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, 100053, China.
| |
Collapse
|
7
|
Borzì L, Sigcha L, Olmo G. Context Recognition Algorithms for Energy-Efficient Freezing-of-Gait Detection in Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094426. [PMID: 37177629 PMCID: PMC10181532 DOI: 10.3390/s23094426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Freezing of gait (FoG) is a disabling clinical phenomenon of Parkinson's disease (PD) characterized by the inability to move the feet forward despite the intention to walk. It is one of the most troublesome symptoms of PD, leading to an increased risk of falls and reduced quality of life. The combination of wearable inertial sensors and machine learning (ML) algorithms represents a feasible solution to monitor FoG in real-world scenarios. However, traditional FoG detection algorithms process all data indiscriminately without considering the context of the activity during which FoG occurs. This study aimed to develop a lightweight, context-aware algorithm that can activate FoG detection systems only under certain circumstances, thus reducing the computational burden. Several approaches were implemented, including ML and deep learning (DL) gait recognition methods, as well as a single-threshold method based on acceleration magnitude. To train and evaluate the context algorithms, data from a single inertial sensor were extracted using three different datasets encompassing a total of eighty-one PD patients. Sensitivity and specificity for gait recognition ranged from 0.95 to 0.96 and 0.80 to 0.93, respectively, with the one-dimensional convolutional neural network providing the best results. The threshold approach performed better than ML- and DL-based methods when evaluating the effect of context awareness on FoG detection performance. Overall, context algorithms allow for discarding more than 55% of non-FoG data and less than 4% of FoG episodes. The results indicate that a context classifier can reduce the computational burden of FoG detection algorithms without significantly affecting the FoG detection rate. Thus, implementation of context awareness can present an energy-efficient solution for long-term FoG monitoring in ambulatory and free-living settings.
Collapse
Affiliation(s)
- Luigi Borzì
- Data Analytics and Technologies for Health Lab (ANTHEA), Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Luis Sigcha
- Data-Driven Computer Engineering (D2iCE) Group, Department of Electronic and Computer Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Gabriella Olmo
- Data Analytics and Technologies for Health Lab (ANTHEA), Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
8
|
Kwon H, Clifford GD, Genias I, Bernhard D, Esper CD, Factor SA, McKay JL. An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients. SENSORS (BASEL, SWITZERLAND) 2023; 23:1766. [PMID: 36850363 PMCID: PMC9968199 DOI: 10.3390/s23041766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to explain how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models' capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.
Collapse
Affiliation(s)
- Hyeokhyen Kwon
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Gari D. Clifford
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Imari Genias
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Doug Bernhard
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Christine D. Esper
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - J. Lucas McKay
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Kwon H, Clifford GD, Genias I, Bernhard D, Esper CD, Factor SA, McKay JL. An explainable spatial-temporal graphical convolutional network to score freezing of gait in parkinsonian patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.13.23284535. [PMID: 36711809 PMCID: PMC9882551 DOI: 10.1101/2023.01.13.23284535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (ie. MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N=57 patients during levodopa challenge tests. The proposed model was able to identify kinematic features associated with each FOG severity level that were highly consistent with the features that movement disorders specialists are trained to identify as characteristic of freezing. In this work, we demonstrate that deep learning models' capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.
Collapse
Affiliation(s)
- Hyeokhyen Kwon
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Gari D. Clifford
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Imari Genias
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Doug Bernhard
- Jean and Paul Amos Parkinson’s disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Christine D. Esper
- Jean and Paul Amos Parkinson’s disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson’s disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - J. Lucas McKay
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA
- Jean and Paul Amos Parkinson’s disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Huang T, Li M, Huang J. Recent trends in wearable device used to detect freezing of gait and falls in people with Parkinson's disease: A systematic review. Front Aging Neurosci 2023; 15:1119956. [PMID: 36875701 PMCID: PMC9975590 DOI: 10.3389/fnagi.2023.1119956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Background The occurrence of freezing of gait (FOG) is often observed in moderate to last-stage Parkinson's disease (PD), leading to a high risk of falls. The emergence of the wearable device has offered the possibility of FOG detection and falls of patients with PD allowing high validation in a low-cost way. Objective This systematic review seeks to provide a comprehensive overview of existing literature to establish the forefront of sensors type, placement and algorithm to detect FOG and falls among patients with PD. Methods Two electronic databases were screened by title and abstract to summarize the state of art on FOG and fall detection with any wearable technology among patients with PD. To be eligible for inclusion, papers were required to be full-text articles published in English, and the last search was completed on September 26, 2022. Studies were excluded if they; (i) only examined cueing function for FOG, (ii) only used non-wearable devices to detect or predict FOG or falls, and (iii) did not provide sufficient details about the study design and results. A total of 1,748 articles were retrieved from two databases. However, only 75 articles were deemed to meet the inclusion criteria according to the title, abstract and full-text reviewed. Variable was extracted from chosen research, including authorship, details of the experimental object, type of sensor, device location, activities, year of publication, evaluation in real-time, the algorithm and detection performance. Results A total of 72 on FOG detection and 3 on fall detection were selected for data extraction. There were wide varieties of the studied population (from 1 to 131), type of sensor, placement and algorithm. The thigh and ankle were the most popular device location, and the combination of accelerometer and gyroscope was the most frequently used inertial measurement unit (IMU). Furthermore, 41.3% of the studies used the dataset as a resource to examine the validity of their algorithm. The results also showed that increasingly complex machine-learning algorithms had become the trend in FOG and fall detection. Conclusion These data support the application of the wearable device to access FOG and falls among patients with PD and controls. Machine learning algorithms and multiple types of sensors have become the recent trend in this field. Future work should consider an adequate sample size, and the experiment should be performed in a free-living environment. Moreover, a consensus on provoking FOG/fall, methods of assessing validity and algorithm are necessary.Systematic Review Registration: PROSPERO, identifier CRD42022370911.
Collapse
Affiliation(s)
- Tinghuai Huang
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, Guangdong, China
| | - Meng Li
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, Guangdong, China
| | - Jianwei Huang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Goh L, Paul SS, Canning CG, Ehgoetz Martens KA, Song J, Campoy SL, Allen NE. The Ziegler Test Is Reliable and Valid for Measuring Freezing of Gait in People With Parkinson Disease. Phys Ther 2022; 102:pzac122. [PMID: 36130220 PMCID: PMC10071484 DOI: 10.1093/ptj/pzac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/06/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The purpose of this study was to determine interrater and test-retest reliability of the Ziegler test to measure freezing of gait (FOG) severity in people with Parkinson disease. Secondary aims were to evaluate test validity and explore Ziegler test duration as a proxy FOG severity measure. METHODS Physical therapists watched 36 videos of people with Parkinson disease and FOG perform the Ziegler test and rated FOG severity using the rating scale in real time. Two researchers rated 12 additional videos and repeated the ratings at least 1 week later. Interrater and test-retest reliability were calculated using intraclass correlation coefficients (ICCs). Bland-Altman plots were used to visualize agreement between the researchers for test-retest reliability. Correlations between the Ziegler scores, Ziegler test duration, and percentage of time frozen (based on video annotations) were determined using Pearson r. RESULTS Twenty-four physical therapists participated. Overall, the Ziegler test showed good interrater (ICC2,1 = 0.80; 95% CI = 0.65-0.92) and excellent test-retest (ICC3,1 = 0.91; 95% CI = 0.82-0.96) reliability when used to measure FOG. It was also a valid measure, with a high correlation (r = 0.72) between the scores and percentage of time frozen. Ziegler test duration was moderately correlated (r = 0.67) with percentage of time frozen and may be considered a proxy FOG severity measure. CONCLUSION The Ziegler test is a reliable and valid tool to measure FOG when used by physical therapists in real time. Ziegler test duration may be used as a proxy for measuring FOG severity. IMPACT Despite FOG being a significant contributor to falls and poor mobility in people with Parkinson disease, current tools to assess FOG are either not suitably responsive or too resource intensive for use in clinical settings. The Ziegler test is a reliable and valid measure of FOG, suitable for clinical use, and may be used by physical therapists regardless of their level of clinical experience.
Collapse
Affiliation(s)
- Lina Goh
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Serene S Paul
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Colleen G Canning
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Jooeun Song
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie L Campoy
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie E Allen
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Di Libero T, Langiano E, Carissimo C, Ferrara M, Diotaiuti P, Rodio A. Technological support for people with Parkinson’s disease: a narrative review. JOURNAL OF GERONTOLOGY AND GERIATRICS 2022. [DOI: 10.36150/2499-6564-n523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Grabowska W, Burton W, Kowalski MH, Vining R, Long CR, Lisi A, Hausdorff JM, Manor B, Muñoz-Vergara D, Wayne PM. A systematic review of chiropractic care for fall prevention: rationale, state of the evidence, and recommendations for future research. BMC Musculoskelet Disord 2022; 23:844. [PMID: 36064383 PMCID: PMC9442928 DOI: 10.1186/s12891-022-05783-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falls in older adults are a significant and growing public health concern. There are multiple risk factors associated with falls that may be addressed within the scope of chiropractic training and licensure. Few attempts have been made to summarize existing evidence on multimodal chiropractic care and fall risk mitigation. Therefore, the broad purpose of this review was to summarize this research to date. BODY: Systematic review was conducted following PRISMA guidelines. Databases searched included PubMed, Embase, Cochrane Library, PEDro, and Index of Chiropractic Literature. Eligible study designs included randomized controlled trials (RCT), prospective non-randomized controlled, observational, and cross-over studies in which multimodal chiropractic care was the primary intervention and changes in gait, balance and/or falls were outcomes. Risk of bias was also assessed using the 8-item Cochrane Collaboration Tool. The original search yielded 889 articles; 21 met final eligibility including 10 RCTs. One study directly measured the frequency of falls (underpowered secondary outcome) while most studies assessed short-term measurements of gait and balance. The overall methodological quality of identified studies and findings were mixed, limiting interpretation regarding the potential impact of chiropractic care on fall risk to qualitative synthesis. CONCLUSION Little high-quality research has been published to inform how multimodal chiropractic care can best address and positively influence fall prevention. We propose strategies for building an evidence base to inform the role of multimodal chiropractic care in fall prevention and outline recommendations for future research to fill current evidence gaps.
Collapse
Affiliation(s)
- Weronika Grabowska
- Brigham and Women's Hospital and Harvard Medical School Division of Preventive Medicine, Osher Center for Integrative Medicine, 900 Commonwealth Avenue, 3rd Floor, Boston, MA, 02215, USA
| | - Wren Burton
- Brigham and Women's Hospital and Harvard Medical School Division of Preventive Medicine, Osher Center for Integrative Medicine, 900 Commonwealth Avenue, 3rd Floor, Boston, MA, 02215, USA.
| | - Matthew H Kowalski
- Osher Clinical Center for Integrative Medicine, Brigham and Women's Healthcare Center, 850 Boylston Street, Suite 422, Chestnut Hill, MA, 02445, USA
| | - Robert Vining
- Palmer Center for Chiropractic Research, 1000 Brady Street, Davenport, IA, 52803, USA
| | - Cynthia R Long
- Palmer Center for Chiropractic Research, 1000 Brady Street, Davenport, IA, 52803, USA
| | - Anthony Lisi
- Yale University Center for Medical Informatics, 300 George Street, Suite 501, New Haven, CT, USA
| | - Jeffrey M Hausdorff
- Center for the Study of Movement Cognition and Mobility, Tel Aviv Sourasky Medical Center, Dafna St 5, Tel Aviv-Yafo, Israel
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, 1200 Centre Street, Boston, MA, 02131, USA
| | - Dennis Muñoz-Vergara
- Brigham and Women's Hospital and Harvard Medical School Division of Preventive Medicine, Osher Center for Integrative Medicine, 900 Commonwealth Avenue, 3rd Floor, Boston, MA, 02215, USA
| | - Peter M Wayne
- Brigham and Women's Hospital and Harvard Medical School Division of Preventive Medicine, Osher Center for Integrative Medicine, 900 Commonwealth Avenue, 3rd Floor, Boston, MA, 02215, USA
| |
Collapse
|
14
|
Bo F, Yerebakan M, Dai Y, Wang W, Li J, Hu B, Gao S. IMU-Based Monitoring for Assistive Diagnosis and Management of IoHT: A Review. Healthcare (Basel) 2022; 10:healthcare10071210. [PMID: 35885736 PMCID: PMC9318359 DOI: 10.3390/healthcare10071210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/22/2023] Open
Abstract
With the rapid development of Internet of Things (IoT) technologies, traditional disease diagnoses carried out in medical institutions can now be performed remotely at home or even ambient environments, yielding the concept of the Internet of Health Things (IoHT). Among the diverse IoHT applications, inertial measurement unit (IMU)-based systems play a significant role in the detection of diseases in many fields, such as neurological, musculoskeletal, and mental. However, traditional numerical interpretation methods have proven to be challenging to provide satisfying detection accuracies owing to the low quality of raw data, especially under strong electromagnetic interference (EMI). To address this issue, in recent years, machine learning (ML)-based techniques have been proposed to smartly map IMU-captured data on disease detection and progress. After a decade of development, the combination of IMUs and ML algorithms for assistive disease diagnosis has become a hot topic, with an increasing number of studies reported yearly. A systematic search was conducted in four databases covering the aforementioned topic for articles published in the past six years. Eighty-one articles were included and discussed concerning two aspects: different ML techniques and application scenarios. This review yielded the conclusion that, with the help of ML technology, IMUs can serve as a crucial element in disease diagnosis, severity assessment, characteristic estimation, and monitoring during the rehabilitation process. Furthermore, it summarizes the state-of-the-art, analyzes challenges, and provides foreseeable future trends for developing IMU-ML systems for IoHT.
Collapse
Affiliation(s)
- Fan Bo
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mustafa Yerebakan
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Yanning Dai
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Weibing Wang
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.L.); (B.H.); (S.G.)
| | - Boyi Hu
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA;
- Correspondence: (J.L.); (B.H.); (S.G.)
| | - Shuo Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Correspondence: (J.L.); (B.H.); (S.G.)
| |
Collapse
|
15
|
Chandrabhatla AS, Pomeraniec IJ, Ksendzovsky A. Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson's disease motor symptoms. NPJ Digit Med 2022; 5:32. [PMID: 35304579 PMCID: PMC8933519 DOI: 10.1038/s41746-022-00568-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor impairments such as tremor, bradykinesia, dyskinesia, and gait abnormalities. Current protocols assess PD symptoms during clinic visits and can be subjective. Patient diaries can help clinicians evaluate at-home symptoms, but can be incomplete or inaccurate. Therefore, researchers have developed in-home automated methods to monitor PD symptoms to enable data-driven PD diagnosis and management. We queried the US National Library of Medicine PubMed database to analyze the progression of the technologies and computational/machine learning methods used to monitor common motor PD symptoms. A sub-set of roughly 12,000 papers was reviewed that best characterized the machine learning and technology timelines that manifested from reviewing the literature. The technology used to monitor PD motor symptoms has advanced significantly in the past five decades. Early monitoring began with in-lab devices such as needle-based EMG, transitioned to in-lab accelerometers/gyroscopes, then to wearable accelerometers/gyroscopes, and finally to phone and mobile & web application-based in-home monitoring. Significant progress has also been made with respect to the use of machine learning algorithms to classify PD patients. Using data from different devices (e.g., video cameras, phone-based accelerometers), researchers have designed neural network and non-neural network-based machine learning algorithms to categorize PD patients across tremor, gait, bradykinesia, and dyskinesia. The five-decade co-evolution of technology and computational techniques used to monitor PD motor symptoms has driven significant progress that is enabling the shift from in-lab/clinic to in-home monitoring of PD symptoms.
Collapse
Affiliation(s)
- Anirudha S Chandrabhatla
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - I Jonathan Pomeraniec
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Neurosurgery, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA.
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland Medical System, Baltimore, MD, 21201, USA
| |
Collapse
|
16
|
O’Day J, Lee M, Seagers K, Hoffman S, Jih-Schiff A, Kidziński Ł, Delp S, Bronte-Stewart H. Assessing inertial measurement unit locations for freezing of gait detection and patient preference. J Neuroeng Rehabil 2022; 19:20. [PMID: 35152881 PMCID: PMC8842967 DOI: 10.1186/s12984-022-00992-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/13/2022] [Indexed: 12/28/2022] Open
Abstract
Background Freezing of gait, a common symptom of Parkinson’s disease, presents as sporadic episodes in which an individual’s feet suddenly feel stuck to the ground. Inertial measurement units (IMUs) promise to enable at-home monitoring and personalization of therapy, but there is a lack of consensus on the number and location of IMUs for detecting freezing of gait. The purpose of this study was to assess IMU sets in the context of both freezing of gait detection performance and patient preference. Methods Sixteen people with Parkinson’s disease were surveyed about sensor preferences. Raw IMU data from seven people with Parkinson’s disease, wearing up to eleven sensors, were used to train convolutional neural networks to detect freezing of gait. Models trained with data from different sensor sets were assessed for technical performance; a best technical set and minimal IMU set were identified. Clinical utility was assessed by comparing model- and human-rater-determined percent time freezing and number of freezing events. Results The best technical set consisted of three IMUs (lumbar and both ankles, AUROC = 0.83), all of which were rated highly wearable. The minimal IMU set consisted of a single ankle IMU (AUROC = 0.80). Correlations between these models and human raters were good to excellent for percent time freezing (ICC = 0.93, 0.89) and number of freezing events (ICC = 0.95, 0.86) for the best technical set and minimal IMU set, respectively. Conclusions Several IMU sets consisting of three IMUs or fewer were highly rated for both technical performance and wearability, and more IMUs did not necessarily perform better in FOG detection. We openly share our data and software to further the development and adoption of a general, open-source model that uses raw signals and a standard sensor set for at-home monitoring of freezing of gait. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-00992-x.
Collapse
|
17
|
Salchow-Hömmen C, Skrobot M, Jochner MCE, Schauer T, Kühn AA, Wenger N. Review-Emerging Portable Technologies for Gait Analysis in Neurological Disorders. Front Hum Neurosci 2022; 16:768575. [PMID: 35185496 PMCID: PMC8850274 DOI: 10.3389/fnhum.2022.768575] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/07/2022] [Indexed: 01/29/2023] Open
Abstract
The understanding of locomotion in neurological disorders requires technologies for quantitative gait analysis. Numerous modalities are available today to objectively capture spatiotemporal gait and postural control features. Nevertheless, many obstacles prevent the application of these technologies to their full potential in neurological research and especially clinical practice. These include the required expert knowledge, time for data collection, and missing standards for data analysis and reporting. Here, we provide a technological review of wearable and vision-based portable motion analysis tools that emerged in the last decade with recent applications in neurological disorders such as Parkinson's disease and Multiple Sclerosis. The goal is to enable the reader to understand the available technologies with their individual strengths and limitations in order to make an informed decision for own investigations and clinical applications. We foresee that ongoing developments toward user-friendly automated devices will allow for closed-loop applications, long-term monitoring, and telemedical consulting in real-life environments.
Collapse
Affiliation(s)
- Christina Salchow-Hömmen
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matej Skrobot
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Magdalena C E Jochner
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schauer
- Control Systems Group, Technische Universität Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, DZNE, Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Lewis SJG, Factor SA, Giladi N, Hallett M, Nieuwboer A, Nutt JG, Przedborski S, Papa SM. Addressing the Challenges of Clinical Research for Freezing of Gait in Parkinson's Disease. Mov Disord 2022; 37:264-267. [PMID: 34939228 PMCID: PMC8840955 DOI: 10.1002/mds.28837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Affiliation(s)
- Simon J. G. Lewis
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, NSW, Australia.,Correspondence: Dr. Lewis, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; or Dr. Papa, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson’s disease and Movement Disorders Program, Emory University School of Medicine, Atlanta, GA USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | - John G. Nutt
- Movement Disorder Section, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97034. USA
| | - Serge Przedborski
- Departments of Pathology & Cell Biology, Neurology, and Neuroscience, Columbia University, New York, NY, USA
| | - Stella M. Papa
- Department of Neurology, School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Correspondence: Dr. Lewis, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; or Dr. Papa, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
| | | |
Collapse
|
19
|
D'Cruz N, Seuthe J, De Somer C, Hulzinga F, Ginis P, Schlenstedt C, Nieuwboer A. Dual Task Turning in Place: A Reliable, Valid, and Responsive Outcome Measure of Freezing of Gait. Mov Disord 2021; 37:269-278. [PMID: 34939224 DOI: 10.1002/mds.28887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/31/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a complex symptom in Parkinson's disease (PD) that is both elusive to elicit and varied in its presentation. These complexities present a challenge to measuring FOG in a sensitive and reliable way, precluding therapeutic advancement. OBJECTIVE We investigated the reliability, validity, and responsiveness of manual video annotations of the turning-in-place task and compared it to the sensor-based FOG ratio. METHODS Forty-five optimally medicated people with PD and FOG performed rapid alternating 360° turns without and with an auditory stroop dual task, thrice over two consecutive days. The tasks were video recorded, and inertial sensors were placed on the lower back and shins. Interrater reliability between three raters, criterion validity with self-reported FOG, and responsiveness to single-session split-belt treadmill (SBT) training were investigated and contrasted with the sensor-based FOG ratio. RESULTS Visual ratings showed excellent agreement between raters for the percentage time frozen (%TF) (ICC [intra-class correlation coefficient] = 0.99), the median duration of a FOG episode (ICC = 0.90), and the number of FOG episodes (ICC = 0.86). Dual tasking improved the sensitivity and validity of visual FOG ratings resulting in increased FOG detection, criterion validity with self-reported FOG ratings, and responsiveness to a short SBT intervention. The sensor-based FOG ratio, on the contrary, showed complex FOG presentation-contingent relationships with visual and self-reported FOG ratings and limited responsiveness to SBT training. CONCLUSIONS Manual video annotations of FOG during dual task turning in place generate reliable, valid, and sensitive outcomes for investigating therapeutic effects on FOG. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicholas D'Cruz
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, Leuven, Belgium
| | - Jana Seuthe
- Department of Neurology, Christian-Albrechts-University (CAU) Kiel, University Hospital Schleswig-Holstein, Kiel, Germany.,Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Clara De Somer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, Leuven, Belgium
| | - Femke Hulzinga
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, Leuven, Belgium
| | - Pieter Ginis
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, Leuven, Belgium
| | - Christian Schlenstedt
- Department of Neurology, Christian-Albrechts-University (CAU) Kiel, University Hospital Schleswig-Holstein, Kiel, Germany.,Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, Leuven, Belgium
| |
Collapse
|
20
|
Dvorani A, Waldheim V, Jochner MCE, Salchow-Hömmen C, Meyer-Ohle J, Kühn AA, Wenger N, Schauer T. Real-Time Detection of Freezing Motions in Parkinson's Patients for Adaptive Gait Phase Synchronous Cueing. Front Neurol 2021; 12:720516. [PMID: 34938252 PMCID: PMC8685223 DOI: 10.3389/fneur.2021.720516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease worldwide reducing cognitive and motoric abilities of affected persons. Freezing of Gait (FoG) is one of the severe symptoms that is observed in the late stages of the disease and considerably impairs the mobility of the person and raises the risk of falls. Due to the pathology and heterogeneity of the Parkinsonian gait cycle, especially in the case of freezing episodes, the detection of the gait phases with wearables is challenging in Parkinson's disease. This is addressed by introducing a state-automaton-based algorithm for the detection of the foot's motion phases using a shoe-placed inertial sensor. Machine-learning-based methods are investigated to classify the actual motion phase as normal or FoG-affected and to predict the outcome for the next motion phase. For this purpose, spatio-temporal gait and signal parameters are determined from the segmented movement phases. In this context, inertial sensor fusion is applied to the foot's 3D acceleration and rate of turn. Support Vector Machine (SVM) and AdaBoost classifiers have been trained on the data of 16 Parkinson's patients who had shown FoG episodes during a clinical freezing-provoking assessment course. Two clinical experts rated the video-recorded trials and marked episodes with festination, shank trembling, shuffling, or akinesia. Motion phases inside such episodes were labeled as FoG-affected. The classifiers were evaluated using leave-one-patient-out cross-validation. No statistically significant differences could be observed between the different classifiers for FoG detection (p>0.05). An SVM model with 10 features of the actual and two preceding motion phases achieved the highest average performance with 88.5 ± 5.8% sensitivity, 83.3 ± 17.1% specificity, and 92.8 ± 5.9% Area Under the Curve (AUC). The performance of predicting the behavior of the next motion phase was significantly lower compared to the detection classifiers. No statistically significant differences were found between all prediction models. An SVM-predictor with features from the two preceding motion phases had with 81.6 ± 7.7% sensitivity, 70.3 ± 18.4% specificity, and 82.8 ± 7.1% AUC the best average performance. The developed methods enable motion-phase-based FoG detection and prediction and can be utilized for closed-loop systems that provide on-demand gait-phase-synchronous cueing to mitigate FoG symptoms and to prevent complete motoric blockades.
Collapse
Affiliation(s)
- Ardit Dvorani
- Control Systems Group, Technische Universität Berlin, Berlin, Germany
- SensorStim Neurotechnology GmbH, Berlin, Germany
- *Correspondence: Ardit Dvorani
| | - Vivian Waldheim
- Control Systems Group, Technische Universität Berlin, Berlin, Germany
| | | | | | - Jonas Meyer-Ohle
- Department of Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Department of Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schauer
- Control Systems Group, Technische Universität Berlin, Berlin, Germany
- SensorStim Neurotechnology GmbH, Berlin, Germany
| |
Collapse
|
21
|
Pardoel S, Shalin G, Lemaire ED, Kofman J, Nantel J. Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson's disease. PLoS One 2021; 16:e0258544. [PMID: 34637473 PMCID: PMC8509886 DOI: 10.1371/journal.pone.0258544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Freezing of gait (FOG) is an intermittent walking disturbance experienced by people with Parkinson's disease (PD). Wearable FOG identification systems can improve gait and reduce the risk of falling due to FOG by detecting FOG in real-time and providing a cue to reduce freeze duration. However, FOG prediction and prevention is desirable. Datasets used to train machine learning models often generate ground truth FOG labels based on visual observation of specific lower limb movements (event-based definition) or an overall inability to walk effectively (period of gait disruption based definition). FOG definition ambiguity may affect model performance, especially with respect to multiple FOG in rapid succession. This research examined whether merging multiple freezes that occurred in rapid succession could improve FOG detection and prediction model performance. Plantar pressure and lower limb acceleration data were used to extract a feature set and train decision tree ensembles. FOG was labeled using an event-based definition. Additional datasets were then produced by merging FOG that occurred in rapid succession. A merging threshold was introduced where FOG that were separated by less than the merging threshold were merged into one episode. FOG detection and prediction models were trained for merging thresholds of 0, 1, 2, and 3 s. Merging slightly improved FOG detection model performance; however, for the prediction model, merging resulted in slightly later FOG identification and lower precision. FOG prediction models may benefit from using event-based FOG definitions and avoiding merging multiple FOG in rapid succession.
Collapse
Affiliation(s)
- Scott Pardoel
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Gaurav Shalin
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Edward D. Lemaire
- Faculty of Medicine, University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jonathan Kofman
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Albán-Cadena AC, Villalba-Meneses F, Pila-Varela KO, Moreno-Calvo A, Villalba-Meneses CP, Almeida-Galárraga DA. Wearable sensors in the diagnosis and study of Parkinson's disease symptoms: a systematic review. J Med Eng Technol 2021; 45:532-545. [PMID: 34060967 DOI: 10.1080/03091902.2021.1922528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nowadays, there are several diseases which affect different systems of the body, producing changes in the correct functioning of the organism and the people lifestyles. One of them is Parkinson's disease (PD), which is defined as a neurodegenerative disorder provoked by the destruction of dopaminergic neurons in the brain, resulting in a set of motor and non-motor symptoms. As this disease affects principally to ancient people, several researchers have studied different treatments and therapies for stopping neurodegeneration and diminishing symptoms, to improve the quality patients' lives. The most common therapies created for PD are based on pharmacological treatment for controlling the degeneration advance and the physical ones which do not reveal the progress of patients. For this reason, this review paper opens the possibility for using wearable motion capture systems as an option for the control and study of PD. Therefore, it aims to (1) study the different wearable systems used for capture the movements of PD patients and (2) determine which of them bring better results for monitoring and assess PD people. For the analysis, it uses papers based on experiments that prove the functioning of several motion systems in different aspects as monitoring, treatment and diagnose of the disease. As a result, it works with 30 papers which describe the factors mentioned before. Additionally, the paper uses journals and literature review about the pathology, its characteristics and the function of wearable sensors for the correct understanding of the topic.
Collapse
Affiliation(s)
- Andrea C Albán-Cadena
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador
| | - Fernando Villalba-Meneses
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador.,University of Zaragoza, Zaragoza, Spain
| | - Kevin O Pila-Varela
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador
| | | | | | | |
Collapse
|
23
|
Garcia FDV, da Cunha MJ, Schuch CP, Schifino GP, Balbinot G, Pagnussat AS. Movement smoothness in chronic post-stroke individuals walking in an outdoor environment-A cross-sectional study using IMU sensors. PLoS One 2021; 16:e0250100. [PMID: 33886640 PMCID: PMC8061986 DOI: 10.1371/journal.pone.0250100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
Background Walking speed is often used in the clinic to assess the level of gait impairment following stroke. Nonetheless, post-stroke individuals may employ the same walking speed but at a distinct movement quality. The main objective of this study was to explore a novel movement quality metric, the estimation of gait smoothness by the spectral arc length (SPARC), in individuals with a chronic stroke displaying mild/moderate or severe motor impairment while walking in an outdoor environment. Also, to quantify the correlation between SPARC, gait speed, motor impairment, and lower limb spasticity focused on understanding the relationship between the movement smoothness metric and common clinical assessments. Methods Thirty-two individuals with a chronic stroke and 32 control subjects participated in this study. The 10 meters walking test (10 MWT) was performed at the self-selected speed in an outdoor environment. The 10 MWT was instrumented with an inertial measurement unit system (IMU), which afforded the extraction of trunk angular velocities (yaw, roll, and pitch) and subsequent SPARC calculation. Results Movement smoothness was not influenced by gait speed in the control group, indicating that SPARC may constitute an additional and independent metric in the gait assessment. Individuals with a chronic stroke displayed reduced smoothness in the yaw and roll angular velocities (lower SPARC) compared with the control group. Also, severely impaired participants presented greater variability in smoothness along the 10 MWT. In the stroke group, a smoother gait in the pitch angular velocity was correlated with lower limb spasticity, likely indicating adaptive use of spasticity to maintain the pendular walking mechanics. Conversely, reduced smoothness in the roll angular velocity was related to pronounced spasticity. Conclusions Individuals with a chronic stroke displayed reduced smoothness in the yaw and roll angular velocities while walking in an outdoor environment. The quantification of gait smoothness using the SPARC metric may represent an additional outcome in clinical assessments of gait in individuals with a chronic stroke.
Collapse
Affiliation(s)
- Flora do Vale Garcia
- Department of Physiotherapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
| | - Maira Jaqueline da Cunha
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Clarissa Pedrini Schuch
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Giulia Palermo Schifino
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Gustavo Balbinot
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Aline Souza Pagnussat
- Department of Physiotherapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Health Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- * E-mail:
| |
Collapse
|
24
|
Early Detection of Freezing of Gait during Walking Using Inertial Measurement Unit and Plantar Pressure Distribution Data. SENSORS 2021; 21:s21062246. [PMID: 33806984 PMCID: PMC8004667 DOI: 10.3390/s21062246] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
Freezing of gait (FOG) is a sudden and highly disruptive gait dysfunction that appears in mid to late-stage Parkinson’s disease (PD) and can lead to falling and injury. A system that predicts freezing before it occurs or detects freezing immediately after onset would generate an opportunity for FOG prevention or mitigation and thus enhance safe mobility and quality of life. This research used accelerometer, gyroscope, and plantar pressure sensors to extract 861 features from walking data collected from 11 people with FOG. Minimum-redundancy maximum-relevance and Relief-F feature selection were performed prior to training boosted ensembles of decision trees. The binary classification models identified Total-FOG or No FOG states, wherein the Total-FOG class included data windows from 2 s before the FOG onset until the end of the FOG episode. Three feature sets were compared: plantar pressure, inertial measurement unit (IMU), and both plantar pressure and IMU features. The plantar-pressure-only model had the greatest sensitivity and the IMU-only model had the greatest specificity. The best overall model used the combination of plantar pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity. Next, the Total-FOG class components were evaluated individually (i.e., Pre-FOG windows, Freeze windows, transition windows between Pre-FOG and Freeze). The best model detected windows that contained both Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 1 s after the freeze began. Windows of FOG data were detected with 93.4% sensitivity. The IMU and plantar pressure feature-based model slightly outperformed models that used data from a single sensor type. The model achieved early detection by identifying the transition from Pre-FOG to FOG while maintaining excellent FOG detection performance (93.4% sensitivity). Therefore, if used as part of an intelligent, real-time FOG identification and cueing system, even if the Pre-FOG state were missed, the model would perform well as a freeze detection and cueing system that could improve the mobility and independence of people with PD during their daily activities.
Collapse
|
25
|
Virmani T, Glover A, Pillai L, Lotia M, Dhall R. Utility of objective gait measures in levodopa-unresponsive freezing in Parkinson's. Clin Case Rep 2021; 9:1072-1077. [PMID: 33768785 PMCID: PMC7981627 DOI: 10.1002/ccr3.3640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 11/09/2022] Open
Abstract
Levodopa-unresponsive gait freezing in Parkinson disease is debilitating. Gait kinematics, while time-consuming, can help optimize levodopa's benefit on gait stride length and stride velocity, and thereby improve freezing and falls in these patients.
Collapse
Affiliation(s)
- Tuhin Virmani
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Aliyah Glover
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Lakshmi Pillai
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Mitesh Lotia
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Rohit Dhall
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
26
|
Del Din S, Kirk C, Yarnall AJ, Rochester L, Hausdorff JM. Body-Worn Sensors for Remote Monitoring of Parkinson's Disease Motor Symptoms: Vision, State of the Art, and Challenges Ahead. JOURNAL OF PARKINSON'S DISEASE 2021; 11:S35-S47. [PMID: 33523020 PMCID: PMC8385520 DOI: 10.3233/jpd-202471] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
The increasing prevalence of neurodegenerative conditions such as Parkinson's disease (PD) and related mobility issues places a serious burden on healthcare systems. The COVID-19 pandemic has reinforced the urgent need for better tools to manage chronic conditions remotely, as regular access to clinics may be problematic. Digital health technology in the form of remote monitoring with body-worn sensors offers significant opportunities for transforming research and revolutionizing the clinical management of PD. Significant efforts are being invested in the development and validation of digital outcomes to support diagnosis and track motor and mobility impairments "off-line". Imagine being able to remotely assess your patient, understand how well they are functioning, evaluate the impact of any recent medication/intervention, and identify the need for urgent follow-up before overt, irreparable change takes place? This could offer new pragmatic solutions for personalized care and clinical research. So the question remains: how close are we to achieving this? Here, we describe the state-of-the-art based on representative papers published between 2017 and 2020. We focus on remote (i.e., real-world, daily-living) monitoring of PD using body-worn sensors (e.g., accelerometers, inertial measurement units) for assessing motor symptoms and their complications. Despite the tremendous potential, existing challenges exist (e.g., validity, regulatory) that are preventing the widespread clinical adoption of body-worn sensors as a digital outcome. We propose a roadmap with clear recommendations for addressing these challenges and future directions to bring us closer to the implementation and widespread adoption of this important way of improving the clinical care, evaluation, and monitoring of PD.
Collapse
Affiliation(s)
- Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Cameron Kirk
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alison J. Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv Israel
- Department of Physical Therapy, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer’s Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
27
|
Cernian A, Tiganoaia B, Sacala I, Pavel A, Iftemi A. PatientDataChain: A Blockchain-Based Approach to Integrate Personal Health Records. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6538. [PMID: 33207620 PMCID: PMC7697358 DOI: 10.3390/s20226538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022]
Abstract
Currently there is not a single trusted infrastructure used for the exchange and storage of medical data along the healthcare value chain and, thus, there is no platform used for monitoring patients' traceability within the entire healthcare chain. This situation leads to difficult communication and increased procedural costs, and thus it limits healthcare players from developing a better understanding and know-how of patients' traceability that could further boost innovation and development of the best-fitted health services. PatientDataChain blockchain-based technology is a novel approach, based on a decentralized healthcare infrastructure that incorporates a trust layer in the healthcare value chain. Our aim was to provide an integrated vision based on interoperability principles, that relies on the usage of specific sensors from various wearable devices, allowing us to collect specific data from patients' medical records. Interconnecting different healthcare providers, the collected data is integrated into a unitary personal health records (PHR) system, where the patient is the owner of his/her data. The decentralized nature of PatientDataChain, based on blockchain technology, leveraged the proper context to create a novel and improved data-sharing and exchange system, which is secure, flexible, and reliable. This approach brings increased benefits to data confidentiality and privacy, while providing secure access to patient medical records. This paper presents the design, implementation, and experimental validation of our proposed system, called PatientDataChain. The original contributions of our paper include the definition of the concept of unifying the entire healthcare value chain, the design of the architectural model of the system, the development of the system components, as well as the validation through a proof of concept (PoC) conducted with a medical clinic from Bucharest, using a dataset of 100 patients and over 1000 transactions. The proof of concept demonstrated the feasibility of the model in integrating the personal health records from heterogeneous sources (healthcare systems and sensors) in a unified, decentralized PHR system, with enhanced data exchange among healthcare players.
Collapse
Affiliation(s)
- Alexandra Cernian
- Faculty of Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Bogdan Tiganoaia
- Faculty of Entrepreneurship, Business Engineering and Management, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ioan Sacala
- Faculty of Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | | | | |
Collapse
|