1
|
Liu Y, Peng N, Kang J, Onodera T, Yatabe R. Identification of Beef Odors under Different Storage Day and Processing Temperature Conditions Using an Odor Sensing System. SENSORS (BASEL, SWITZERLAND) 2024; 24:5590. [PMID: 39275501 PMCID: PMC11397898 DOI: 10.3390/s24175590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
This study used an odor sensing system with a 16-channel electrochemical sensor array to measure beef odors, aiming to distinguish odors under different storage days and processing temperatures for quality monitoring. Six storage days ranged from purchase (D0) to eight days (D8), with three temperature conditions: no heat (RT), boiling (100 °C), and frying (180 °C). Gas chromatography-mass spectrometry (GC-MS) analysis showed that odorants in the beef varied under different conditions. Compounds like acetoin and 1-hexanol changed significantly with the storage days, while pyrazines and furans were more detectable at higher temperatures. The odor sensing system data were visualized using principal component analysis (PCA) and uniform manifold approximation and projection (UMAP). PCA and unsupervised UMAP clustered beef odors by storage days but struggled with the processing temperatures. Supervised UMAP accurately clustered different temperatures and dates. Machine learning analysis using six classifiers, including support vector machine, achieved 57% accuracy for PCA-reduced data, while unsupervised UMAP reached 49.1% accuracy. Supervised UMAP significantly enhanced the classification accuracy, achieving over 99.5% with the dimensionality reduced to three or above. Results suggest that the odor sensing system can sufficiently enhance non-destructive beef quality and safety monitoring. This research advances electronic nose applications and explores data downscaling techniques, providing valuable insights for future studies.
Collapse
Affiliation(s)
- Yuanchang Liu
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nan Peng
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jinlong Kang
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Onodera
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rui Yatabe
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Carapito Â, Roque ACA, Carvalho F, Pinto J, Guedes de Pinho P. Exploiting volatile fingerprints for bladder cancer diagnosis: A scoping review of metabolomics and sensor-based approaches. Talanta 2024; 268:125296. [PMID: 37839328 DOI: 10.1016/j.talanta.2023.125296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Bladder cancer (BC) represents a significant global health concern, for which early detection is essential to improve patient outcomes. This review evaluates the potential of the urinary volatile organic compounds (VOCs) as biomarkers for detecting and staging BC. The methods used include gas chromatography-mass spectrometry (GC-MS)-based metabolomics and electronic-nose (e-nose) sensors. The GC-MS studies that have been published reveal diverse results in terms of diagnostic performance. The sensitivities range from 27 % to an impressive 97 %, while specificities vary between 43 % and 94 %. Furthermore, the accuracies reported in these studies range from 80 to 89 %. In the urine of BC patients, a total of 80 VOCs were discovered to be significantly altered when compared to controls. These VOCs encompassed a variety of chemical classes such as alcohols, aldehydes, alkanes, aromatic compounds, fatty acids, ketones, and terpenoids, among others. Conversely, e-nose-based studies displayed sensitivities from 60 to 100 %, specificities from 53 to 96 %, and accuracies from 65 to 97 %. Interestingly, conductive polymer-based sensors performed better, followed by metal oxide semiconductor and optical sensors. GC-MS studies have shown improved performance in detecting early stages and low-grade tumors, providing valuable insights into staging. Based on these findings, VOC-based diagnostic tools hold great promise for early BC detection and staging. Further studies are needed to validate biomarkers and their classification performance. In the future, advancements in VOC profiling technologies may significantly contribute to improving the overall survival and quality of life for BC patients.
Collapse
Affiliation(s)
- Ângela Carapito
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Ana Cecília A Roque
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
3
|
Ba Hashwan SS, Khir MHM, Nawi IM, Ahmad MR, Hanif M, Zahoor F, Al-Douri Y, Algamili AS, Bature UI, Alabsi SS, Sabbea MOB, Junaid M. A review of piezoelectric MEMS sensors and actuators for gas detection application. NANOSCALE RESEARCH LETTERS 2023; 18:25. [PMID: 36847870 DOI: 10.1186/s11671-023-03779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 05/24/2023]
Abstract
Piezoelectric microelectromechanical system (piezo-MEMS)-based mass sensors including the piezoelectric microcantilevers, surface acoustic waves (SAW), quartz crystal microbalance (QCM), piezoelectric micromachined ultrasonic transducer (PMUT), and film bulk acoustic wave resonators (FBAR) are highlighted as suitable candidates for highly sensitive gas detection application. This paper presents the piezo-MEMS gas sensors' characteristics such as their miniaturized structure, the capability of integration with readout circuit, and fabrication feasibility using multiuser technologies. The development of the piezoelectric MEMS gas sensors is investigated for the application of low-level concentration gas molecules detection. In this work, the various types of gas sensors based on piezoelectricity are investigated extensively including their operating principle, besides their material parameters as well as the critical design parameters, the device structures, and their sensing materials including the polymers, carbon, metal-organic framework, and graphene.
Collapse
Affiliation(s)
- Saeed S Ba Hashwan
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
| | - Mohd Haris Md Khir
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Illani Mohd Nawi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohamad Radzi Ahmad
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mehwish Hanif
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Furqan Zahoor
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Y Al-Douri
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University, Eflatun Sk. No: 8, 34940, Tuzla, Istanbul, Turkey
- Department of Applied Science and Astronomy, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Saleh Algamili
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Usman Isyaku Bature
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Sami Sultan Alabsi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohammed O Ba Sabbea
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Muhammad Junaid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
- Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| |
Collapse
|
4
|
Epping R, Koch M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 2023; 28:1598. [PMID: 36838585 PMCID: PMC9966347 DOI: 10.3390/molecules28041598] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research.
Collapse
Affiliation(s)
- Ruben Epping
- Division of Organic Trace and Food Analysis, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany
| | - Matthias Koch
- Division of Organic Trace and Food Analysis, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany
| |
Collapse
|
5
|
Casanova-Chafer J, Garcia-Aboal R, Atienzar P, Feliz M, Llobet E. Octahedral Molybdenum Iodide Clusters Supported on Graphene for Resistive and Optical Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57122-57132. [PMID: 36511821 PMCID: PMC9801382 DOI: 10.1021/acsami.2c15716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 06/15/2023]
Abstract
This paper reports for the first time a gas-sensitive nanohybrid based on octahedral molybdenum iodide clusters supported on graphene flakes (Mo6@Graphene). The possibility of integrating this material into two different transducing schemes for gas sensing is proposed since the nanomaterial changes both its electrical resistivity and optical properties when exposed to gases and at room temperature. Particularly, when implemented in a chemoresistive device, the Mo6@Graphene hybrid showed an outstanding sensing performance toward NO2, revealing a limit of quantification of about 10 ppb and excellent response repeatability (0.9% of relative error). While the Mo6@Graphene chemoresistor was almost insensitive to NH3, the use of an optical transduction scheme (changes in photoluminescence) provided an outstanding detection of NH3 even for a low loading of Mo6. Nevertheless, the photoluminescence was not affected by the presence of NO2. In addition, the hybrid material revealed high stability of its gas sensing properties over time and under ambient moisture. Computational chemistry calculations were performed to better understand these results, and plausible sensing mechanisms were presented accordingly. These results pave the way to develop a new generation of multi-parameter sensors in which electronic and optical interrogation techniques can be implemented simultaneously, advancing toward the realization of highly selective and orthogonal gas sensing.
Collapse
Affiliation(s)
- Juan Casanova-Chafer
- MINOS
Research Group, Department of Electronics Engineering, Universitat
Rovira i Virgili, Tarragona43007, Spain
| | - Rocio Garcia-Aboal
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avd. de los Naranjos s/n, Valencia46022, Spain
| | - Pedro Atienzar
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avd. de los Naranjos s/n, Valencia46022, Spain
| | - Marta Feliz
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avd. de los Naranjos s/n, Valencia46022, Spain
| | - Eduard Llobet
- MINOS
Research Group, Department of Electronics Engineering, Universitat
Rovira i Virgili, Tarragona43007, Spain
| |
Collapse
|
6
|
Acikbas Y, Erdogan M, Capan R, Ozkaya Erdogan C, Baygu Y, Kabay N, Gök Y, Kucukyildiz G. Preparation and characterization of the phthalocyanine–zinc(II) complex-based nanothin films: optical and gas-sensing properties. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Song Z, Tang W, Chen Z, Wan Z, Chan CLJ, Wang C, Ye W, Fan Z. Temperature-Modulated Selective Detection of Part-per-Trillion NO 2 Using Platinum Nanocluster Sensitized 3D Metal Oxide Nanotube Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203212. [PMID: 36058651 DOI: 10.1002/smll.202203212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor chemiresistive gas sensors play critical roles in a smart and sustainable city where a safe and healthy environment is the foundation. However, the poor limits of detection and selectivity are the two bottleneck issues limiting their broad applications. Herein, a unique sensor design with a 3D tin oxide (SnO2 ) nanotube array as the sensing layer and platinum (Pt) nanocluster decoration as the catalytic layer, is demonstrated. The Pt/SnO2 sensor significantly enhances the sensitivity and selectivity of NO2 detection by strengthening the adsorption energy and lowering the activation energy toward NO2 . It not only leads to ultrahigh sensitivity to NO2 with a record limit of detection of 107 parts per trillion, but also enables selective NO2 sensing while suppressing the responses to interfering gases. Furthermore, a wireless sensor system integrated with sensors, a microcontroller, and a Bluetooth unit is developed for the practical indoor and on-road NO2 detection applications. The rational design of the sensors and their successful demonstration pave the way for future real-time gas monitoring in smart home and smart city applications.
Collapse
Affiliation(s)
- Zhilong Song
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
- Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenying Tang
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhesi Chen
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhu'an Wan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chak Lam Jonathan Chan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wenhao Ye
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
8
|
Recent Progress on Nanomaterials for NO 2 Surface Acoustic Wave Sensors. NANOMATERIALS 2022; 12:nano12122120. [PMID: 35745459 PMCID: PMC9227767 DOI: 10.3390/nano12122120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
NO2 gas surface acoustic wave (SAW)sensors are under continuous development due to their high sensitivity, reliability, low cost and room temperature operation. Their integration ability with different receptor nanomaterials assures a boost in the performance of the sensors. Among the most exploited nano-materials for sensitive detection of NO2 gas molecules are carbon-based nanomaterials, metal oxide semiconductors, quantum dots, and conducting polymers. All these nanomaterials aim to create pores for NO2 gas adsorption or to enlarge the specific surface area with ultra-small nanoparticles that increase the active sites where NO2 gas molecules can diffuse. This review provides a general overview of NO2 gas SAW sensors, with a focus on the different sensors’ configurations and their fabrication technology, on the nanomaterials used as sensitive NO2 layers and on the test methods for gas detection. The synthesis methods of sensing nanomaterials, their functionalization techniques, the mechanism of interaction between NO2 molecules and the sensing nanomaterials are presented and discussed.
Collapse
|
9
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
10
|
Park J, Jumu F, Power J, Richard M, Elsahli Y, Jarkas MA, Ruan A, Luican-Mayer A, Ménard JM. Drone-Mountable Gas Sensing Platform Using Graphene Chemiresistors for Remote In-Field Monitoring. SENSORS 2022; 22:s22062383. [PMID: 35336554 PMCID: PMC8954879 DOI: 10.3390/s22062383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023]
Abstract
We present the design, fabrication, and testing of a drone-mountable gas sensing platform for environmental monitoring applications. An array of graphene-based field-effect transistors in combination with commercial humidity and temperature sensors are used to relay information by wireless communication about the presence of airborne chemicals. We show that the design, based on an ESP32 microcontroller combined with a 32-bit analog-to-digital converter, can be used to achieve an electronic response similar, within a factor of two, to state-of-the-art laboratory monitoring equipment. The sensing platform is then mounted on a drone to conduct field tests, on the ground and in flight. During these tests, we demonstrate a one order of magnitude reduction in environmental noise by reducing contributions from humidity and temperature fluctuations, which are monitored in real-time with a commercial sensor integrated to the sensing platform. The sensing device is controlled by a mobile application and uses LoRaWAN, a low-power, wide-area networking protocol, for real-time data transmission to the cloud, compatible with Internet of Things (IoT) applications.
Collapse
|
11
|
Yan X, Qu H, Chang Y, Duan X. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Cepeda E, Narváez K. Molecular Photoacoustic Imaging. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.04.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Medicine has gone through several challenges to make it much more accurate and thus prolong the human being's life. A large part of this challenge is diseased, so early detection can help carry out treatment on time. There is a technology that allows detecting an abnormality within the body without using an invasive method. Ultrasound is a diagnostic test used to scan organs and tissues through sound waves. Although this technique has been widely used, the results are not desired because the images generated are not high resolution.
On the other hand, X-rays are used because it presents an image with a much higher resolution than other techniques based on light waves or ultrasound; despite this, they are harmful to cells. In consequence of this problem, another method called molecular photoacoustic imaging has been implemented. This technique bridges the traditional depth limits of ballistic optical imaging and diffuse optical imaging's resolution limits, using the acoustic waves generated in response to laser light absorption, which has now shown potential for molecular imaging, allowing the visualization of biological processes in a non-invasive way. The purpose of this article is to give a critically scoped review of the physical, chemical, and biochemical characteristics of existing photoacoustic contrast agents, highlighting the pivotal applications and current challenges for molecular photoacoustic imaging.
Collapse
Affiliation(s)
- Eduardo Cepeda
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador
| | - Katherine Narváez
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador
| |
Collapse
|
13
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
Liu XY, Yin XM, Yang SL, Zhang L, Bu R, Gao EQ. Chromic and Fluorescence-Responsive Metal-Organic Frameworks Afforded by N-Amination Modification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20380-20387. [PMID: 33878258 DOI: 10.1021/acsami.1c03937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensory materials that show color and/or fluorescence changes in response to specific gases or vapors have important applications in many fields. Here, we report the postsynthetic preparation of novel sensory metal-organic frameworks (MOFs) and their multiple responsive properties. Through postsynthetic N-amination, the 2,2'-bipyridyl spacers in a Zr(IV) MOF are partially transformed into N-aminobipyridinium. The new MOF (Zr-bpy-A) shows chromic behavior toward ammonia and amines because the electron-deficient pyridinium groups form charge-transfer complexes with amino moieties. It also shows a unique chromic response to formaldehyde owing to the Schiff-base condensation with the N-amino groups. Furthermore, the N-amino group can be used to graft different polycyclic aromatic hydrocarbons, which endow the MOF with strong fluorescence of variable colors and afford a high-contrast fluorescence response to ammonia/amines and formaldehyde associated with the chromic response. The presence of the unquaternized bipyridyl group also leads to a fluorescence response to HCl. The multiple responsive behaviors hold appeal for applications in sensing, switching, and antifake marking, which are illustrated with a test paper and writing ink.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xue-Mei Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
15
|
|