1
|
Olszewski A, Ławniczak A, Kosmela P, Strąkowski M, Mielewczyk-Gryń A, Hejna A, Piszczyk Ł. Influence of Surface-Modified Montmorillonite Clays on the Properties of Elastomeric Thin Layer Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1703. [PMID: 36837332 PMCID: PMC9964914 DOI: 10.3390/ma16041703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
In recent years, polyurethane nanocomposites have attracted more attention due to the massive demand for materials with increasingly exceptional mechanical, optical, electrical, and thermal properties. As nanofillers have a high surface area, the interaction between the nanofiller and the polymer matrix is an essential issue for these materials. The main aim of this study is to validate the impact of the montmorillonite nanofiller (MMT) surface structure on the properties of polyurethane thin-film nanocomposites. Despite the interest in polyurethane-montmorillonite clay nanocomposites, only a few studies have explored the impact of montmorillonite surface modification on polyurethane's material properties. For this reason, four types of polyurethane nanocomposites with up to 3% content of MMT were manufactured using the prepolymer method. The impact of montmorillonites on nanocomposites properties was tested by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), contact angle measurement, X-ray diffraction (XRD), and optical coherence tomography (OCT). The results showed that chemical and physical interactions between the polymer matrix and functional groups on the montmorillonite surface have a considerable impact on the final properties of the materials. It was noticed that the addition of MMT changed the thermal decomposition process, increased T2% by at least 14 °C, changed the hydrophilicity of the materials, and increased the glass transition temperature. These findings have underlined the importance of montmorillonite surface structure and interactions between nanocomposite phases for the final properties of nanocomposites.
Collapse
Affiliation(s)
- Adam Olszewski
- Department of Polymer Technology, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Aleksandra Ławniczak
- Department of Polymer Technology, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Paulina Kosmela
- Department of Polymer Technology, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Marcin Strąkowski
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
| | - Łukasz Piszczyk
- Department of Polymer Technology, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
2
|
Wang A, Qi W, Gao T, Tang X. Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine. Int J Mol Sci 2022; 23:ijms23063038. [PMID: 35328454 PMCID: PMC8949853 DOI: 10.3390/ijms23063038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
The growing need to understand the molecular mechanisms of diseases has prompted the revolution in molecular imaging techniques along with nanomedicine development. Conventional optical coherence tomography (OCT) is a low-cost in vivo imaging modality that provides unique high spatial and temporal resolution anatomic images but little molecular information. However, given the widespread adoption of OCT in research and clinical practice, its robust molecular imaging extensions are strongly desired to combine with anatomical images. A range of relevant approaches has been reported already. In this article, we review the recent advances of molecular contrast OCT imaging techniques, the corresponding contrast agents, especially the nanoparticle-based ones, and their applications. We also summarize the properties, design criteria, merit, and demerit of those contrast agents. In the end, the prospects and challenges for further research and development in this field are outlined.
Collapse
|