1
|
Kelly JT, Koch CJ, Lascola R, Guin T. Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:7501. [PMID: 39686037 DOI: 10.3390/s24237501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
An innovative solution for real-time monitoring of reactions within confined spaces, optimized for Raman spectroscopy applications, is presented. This approach involves the utilization of a hollow-core waveguide configured as a compact flow cell, serving both as a conduit for Raman excitation and scattering and seamlessly integrating into the effluent stream of a cracking catalytic reactor. The analytical technique, encompassing device and optical design, ensures robustness, compactness, and cost-effectiveness for implementation into process facilities. Notably, the modularity of the approach empowers customization for diverse gas monitoring needs, as it readily adapts to the specific requirements of various sensing scenarios. As a proof of concept, the efficacy of a spectroscopic approach is shown by monitoring two catalytic processes: CO2 methanation (CO2 + 4H2 → CH4 + 2H2O) and ammonia cracking (2NH3 → N2 + 3H2). Leveraging chemometric data processing techniques, spectral signatures of the individual components involved in these reactions are effectively disentangled and the results are compared to mass spectrometry data. This robust methodology underscores the versatility and reliability of this monitoring system in complex chemical environments.
Collapse
Affiliation(s)
- John T Kelly
- Savannah River National Laboratory, 301 Gateway Drive, Aiken, SC 29803, USA
| | - Christopher J Koch
- Savannah River National Laboratory, 301 Gateway Drive, Aiken, SC 29803, USA
| | - Robert Lascola
- Savannah River National Laboratory, 301 Gateway Drive, Aiken, SC 29803, USA
| | - Tyler Guin
- Savannah River National Laboratory, 301 Gateway Drive, Aiken, SC 29803, USA
| |
Collapse
|
2
|
Yang D, Li W, Tian H, Chen Z, Ji Y, Dong H, Wang Y. High-Sensitivity and In Situ Multi-Component Detection of Gases Based on Multiple-Reflection-Cavity-Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:5825. [PMID: 39275735 PMCID: PMC11398158 DOI: 10.3390/s24175825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Raman spectroscopy with the advantages of the in situ and simultaneous detection of multi-components has been widely used in the identification and quantitative detection of gas. As a type of scattering spectroscopy, the detection sensitivity of Raman spectroscopy is relatively lower, mainly due to the low signal collection efficiency. This paper presents the design and assembly of a multi-channel cavity-enhanced Raman spectroscopy system, optimizing the structure of the sample pool to reduce the loss of the laser and increase the excitation intensity of the Raman signals. Moreover, three channels are used to collect Raman signals to increase the signal collection efficiency for improving the detection sensitivity. The results showed that the limits of detection for the CH4, H2, CO2, O2, and N2 gases were calculated to be 3.1, 34.9, 17.9, 27, and 35.2 ppm, respectively. The established calibration curves showed that the correlation coefficients were all greater than 0.999, indicating an excellent linear correlation and high level of reliability. Meanwhile, under long-time integration detection, the Raman signals of CH4, H2, and CO2 could be clearly distinguished at the concentrations of 10, 10, and 50 ppm, respectively. The results indicated that the designed Raman system possesses broad application prospects in complex field environments.
Collapse
Affiliation(s)
- Dewang Yang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenhua Li
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haoyue Tian
- Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhigao Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuhang Ji
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hui Dong
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Yongmei Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
3
|
Shirmohammad M, Short MA, Zeng H. Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer. BIOSENSORS 2023; 13:979. [PMID: 37998154 PMCID: PMC10669419 DOI: 10.3390/bios13110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Raman enhancement techniques are essential for gas analysis to increase the detection sensitivity of a Raman spectroscopy system. We have developed an efficient Raman enhancement technique called the collision-enhanced Raman scattering (CERS), where the active Raman gas as the analyte is mixed with a buffer gas inside the hollow-core photonic-crystal fiber (HCPCF) of a fiber-enhanced Raman spectroscopy (FERS) system. This results in an enhanced Raman signal from the analyte gas. In this study, we first showed that the intensity of the 587 cm-1 stimulated Raman scattering (SRS) peak of H2 confined in an HCPCF is enhanced by as much as five orders of magnitude by mixing with a buffer gas such as helium or N2. Secondly, we showed that the magnitudes of Raman enhancement depend on the type of buffer gas, with helium being more efficient compared to N2. This makes helium a favorable buffer gas for CERS. Thirdly, we applied CERS for Raman measurements of propene, a metabolically interesting volatile organic compound (VOC) with an association to lung cancer. CERS resulted in a substantial enhancement of propene Raman peaks. In conclusion, the CERS we developed is a simple and efficient Raman-enhancing mechanism for improving gas analysis. It has great potential for application in breath analysis for lung cancer detection.
Collapse
Affiliation(s)
- Maryam Shirmohammad
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada;
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Michael A. Short
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Haishan Zeng
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada;
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V5Z 4E8, Canada
| |
Collapse
|
4
|
Shirmohammad M, Short MA, Zeng H. A New Gas Analysis Method Based on Single-Beam Excitation Stimulated Raman Scattering in Hollow Core Photonic Crystal Fiber Enhanced Raman Spectroscopy. Bioengineering (Basel) 2023; 10:1161. [PMID: 37892891 PMCID: PMC10604339 DOI: 10.3390/bioengineering10101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
We previously developed a hollow-core photonic crystal fiber (HCPCF) based Raman scattering enhancement technique for gas/human breath analysis. It enhances photon-gas molecule interactions significantly but is still based on CW laser excitation spontaneous Raman scattering, which is a low-probability phenomenon. In this work, we explored nanosecond/sub-nanosecond pulsed laser excitation in HCPCF based fiber enhanced Raman spectroscopy (FERS) and successfully induced stimulated Raman scattering (SRS) enhancement. Raman measurements of simple and complex gases were performed using the new system to assess its feasibility for gas analysis. We studied the gas Raman scattering characteristics, the relationship between Raman intensities and pump energies, and the energy threshold for the transition from spontaneous Raman scattering to SRS. H2, CO2, and propene (C3H6) were used as test gases. Our results demonstrated that a single-beam pulsed pump combined with FERS provides an effective Raman enhancement technique for gas analysis. Furthermore, an energy threshold for SRS initiation was experimentally observed. The SRS-capable FERS system, utilizing a single-beam pulsed pump, shows great potential for analyzing complex gases such as propene, which is a volatile organic compound (VOC) gas, serving as a biomarker in human breath for lung cancer and other human diseases. This work contributes to the advancement of gas analysis and opens alternative avenues for exploring novel Raman enhancement techniques.
Collapse
Affiliation(s)
- Maryam Shirmohammad
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada;
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Michael A. Short
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Haishan Zeng
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada;
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V5Z 4E8, Canada
| |
Collapse
|
5
|
Abstract
Raman spectroscopy is a promising tool for measuring the composition of natural gas. However, to obtain high measurement accuracy, it is necessary to take into account changes in the spectral characteristics of methane, since its spectrum overlaps the characteristic bands of other species. In this study we present a technique for natural gas analysis based on polarized Raman spectroscopy. It is shown that the use of only isotropic components of spectra simplifies the procedure for extracting concentrations and improves the measurement accuracy of components whose spectral bands are significantly overlapped in conventional Raman spectra. The presented technique will be very useful both in the field of analysis of various multicomponent gas mixtures and in the field of measuring the isotopic composition of molecules.
Collapse
Affiliation(s)
- Dmitry Petrov
- Institute of Monitoring of Climatic and Ecological Systems, Tomsk 634055, Russia
- Tomsk State University, Tomsk 634050, Russia
| | - Ivan Matrosov
- Institute of Monitoring of Climatic and Ecological Systems, Tomsk 634055, Russia
| |
Collapse
|
6
|
Yang QY, Tan Y, Qu ZH, Sun Y, Liu AW, Hu SM. Multiple Gas Detection by Cavity-Enhanced Raman Spectroscopy with Sub-ppm Sensitivity. Anal Chem 2023; 95:5652-5660. [PMID: 36940417 DOI: 10.1021/acs.analchem.2c05432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Accurate and sensitive detection of multicomponent trace gases below the parts-per-million (ppm) level is needed in a variety of medical, industrial, and environmental applications. Raman spectroscopy can identify multiple molecules in the sample simultaneously and has excellent potential for fast diagnosis of various samples, but applications are often limited by its sensitivity. In this contribution, we report the development of a cavity-enhanced Raman spectroscopy instrument using a narrow-line width 532 nm laser locked with a high-finesse cavity through a Pound-Drever-Hall locking servo, which allows continuous measurement in a broad spectral range. An intracavity laser power of up to 1 kW was achieved with an incident laser power of about 240 mW, resulting in a significant enhancement of the Raman signal in the range of 200-5000 cm-1 and a sub-ppm sensitivity for various molecules. The technique is applied in the detection of different samples, including ambient air, natural gas, and reference gas of sulfur hexafluoride, demonstrating its capability for the quantitative measurement of various trace components.
Collapse
Affiliation(s)
- Qing-Ying Yang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan Tan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Han Qu
- State Grid Hubei Electric Power Research Institute, Wuhan 430071, China
| | - Yu Sun
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - An-Wen Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shui-Ming Hu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Ruzankina I, Mukhin N, Mermoul A, Parfenov V, Fron E, Ferrini G. Surface optical sensitivity enhanced by a single dielectric microsphere. OPTICS EXPRESS 2022; 30:43021-43036. [PMID: 36523010 DOI: 10.1364/oe.472720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Single dielectric microspheres can manipulate light focusing and collection to enhance optical interaction with surfaces. To demonstrate this principle, we experimentally investigate the enhancement of the Raman signal collected by a single dielectric microsphere, with a radius much larger than the exciting laser spot size, residing on the sample surface. The absolute microsphere-assisted Raman signal from a single graphene layer measured in air is more than a factor of two higher than that obtained with a high numerical aperture objective. Results from Mie's theory are used to benchmark numerical simulations and an analytical model to describe the isolated microsphere focusing properties. The analytical model and the numerical simulations justify the Raman signal enhancement measured in the microsphere-assisted Raman spectroscopy experiments.
Collapse
|
8
|
Petrov D. Comment on Hydrogen and C2-C6 Alkane Sensing in Complex Fuel Gas Mixtures with Fiber-Enhanced Raman Spectroscopy. Anal Chem 2021; 93:16282-16284. [PMID: 34784179 DOI: 10.1021/acs.analchem.1c03358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dmitry Petrov
- Institute of Monitoring of Climatic and Ecological Systems, Tomsk 634055, Russia
| |
Collapse
|
9
|
Alberti S, Datta A, Jágerská J. Integrated Nanophotonic Waveguide-Based Devices for IR and Raman Gas Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2021; 21:7224. [PMID: 34770531 PMCID: PMC8587819 DOI: 10.3390/s21217224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
On-chip devices for absorption spectroscopy and Raman spectroscopy have been developing rapidly in the last few years, triggered by the growing availability of compact and affordable tunable lasers, detectors, and on-chip spectrometers. Material processing that is compatible with mass production has been proven to be capable of long low-loss waveguides of sophisticated designs, which are indispensable for high-light-analyte interactions. Sensitivity and selectivity have been further improved by the development of sorbent cladding. In this review, we discuss the latest advances and challenges in the field of waveguide-enhanced Raman spectroscopy (WERS) and waveguide infrared absorption spectroscopy (WIRAS). The development of integrated light sources and detectors toward miniaturization will be presented, together with the recent advances on waveguides and cladding to improve sensitivity. The latest reports on gas-sensing applications and main configurations for WERS and WIRAS will be described, and the most relevant figures of merit and limitations of different sensor realizations summarized.
Collapse
Affiliation(s)
- Sebastián Alberti
- Department of Physics and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (A.D.); (J.J.)
| | | | | |
Collapse
|
10
|
Allsop T, Neal R. A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:6755. [PMID: 34695970 PMCID: PMC8537185 DOI: 10.3390/s21206755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
At the present time, there are major concerns regarding global warming and the possible catastrophic influence of greenhouse gases on climate change has spurred the research community to investigate and develop new gas-sensing methods and devices for remote and continuous sensing. Furthermore, there are a myriad of workplaces, such as petrochemical and pharmacological industries, where reliable remote gas tests are needed so that operatives have a safe working environment. The authors have concentrated their efforts on optical fibre sensing of gases, as we became aware of their increasing range of applications. Optical fibre gas sensors are capable of remote sensing, working in various environments, and have the potential to outperform conventional metal oxide semiconductor (MOS) gas sensors. Researchers are studying a number of configurations and mechanisms to detect specific gases and ways to enhance their performances. Evidence is growing that optical fibre gas sensors are superior in a number of ways, and are likely to replace MOS gas sensors in some application areas. All sensors use a transducer to produce chemical selectivity by means of an overlay coating material that yields a binding reaction. A number of different structural designs have been, and are, under investigation. Examples include tilted Bragg gratings and long period gratings embedded in optical fibres, as well as surface plasmon resonance and intra-cavity absorption. The authors believe that a review of optical fibre gas sensing is now timely and appropriate, as it will assist current researchers and encourage research into new photonic methods and techniques.
Collapse
Affiliation(s)
- Thomas Allsop
- School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK
- Aston Institute of Photonic Technologies (AIPT), Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ronald Neal
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK;
| |
Collapse
|