1
|
Sel K, Hawkins-Daarud A, Chaudhuri A, Osman D, Bahai A, Paydarfar D, Willcox K, Chung C, Jafari R. Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine. NPJ Digit Med 2025; 8:40. [PMID: 39825103 PMCID: PMC11742391 DOI: 10.1038/s41746-025-01447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Digital twins in precision medicine provide tailored health recommendations by simulating patient-specific trajectories and interventions. We examine the critical role of Verification, Validation, and Uncertainty Quantification (VVUQ) for digital twins in ensuring safety and efficacy, with examples in cardiology and oncology. We highlight challenges and opportunities for developing personalized trial methodologies, validation metrics, and standardizing VVUQ processes. VVUQ frameworks are essential for integrating digital twins into clinical practice.
Collapse
Affiliation(s)
- Kaan Sel
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrea Hawkins-Daarud
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Chaudhuri
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Deen Osman
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ahmad Bahai
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Paydarfar
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Karen Willcox
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Caroline Chung
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roozbeh Jafari
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
| |
Collapse
|
2
|
Ono T, Okuda S, Ushiba S, Kanai Y, Matsumoto K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:333. [PMID: 38255502 PMCID: PMC10817696 DOI: 10.3390/ma17020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Owing to its outstanding physical properties, graphene has attracted attention as a promising biosensor material. Field-effect-transistor (FET)-based biosensors are particularly promising because of their high sensitivity that is achieved through the high carrier mobility of graphene. However, graphene-FET biosensors have not yet reached widespread practical applications owing to several problems. In this review, the authors focus on graphene-FET biosensors and discuss their advantages, the challenges to their development, and the solutions to the challenges. The problem of Debye screening, in which the surface charges of the detection target are shielded and undetectable, can be solved by using small-molecule receptors and their deformations and by using enzyme reaction products. To address the complexity of sample components and the detection mechanisms of graphene-FET biosensors, the authors outline measures against nonspecific adsorption and the remaining problems related to the detection mechanism itself. The authors also introduce a solution with which the molecular species that can reach the sensor surfaces are limited. Finally, the authors present multifaceted approaches to the sensor surfaces that provide much information to corroborate the results of electrical measurements. The measures and solutions introduced bring us closer to the practical realization of stable biosensors utilizing the superior characteristics of graphene.
Collapse
Affiliation(s)
- Takao Ono
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Satoshi Okuda
- High Frequency & Optical Device Works, Mitsubishi Electric Corporation, 4-1 Mizuhara, Itami, Sendai 664-8641, Japan
| | - Shota Ushiba
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Kyoto 617-8555, Japan
| | - Yasushi Kanai
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | |
Collapse
|
3
|
Sharma A, AlGhamdi WS, Faber H, Lin YH, Liu CH, Hsu EK, Lin WZ, Naphade D, Mandal S, Heeney M, Anthopoulos TD. Non-invasive, ultrasensitive detection of glucose in saliva using metal oxide transistors. Biosens Bioelectron 2023; 237:115448. [PMID: 37348190 DOI: 10.1016/j.bios.2023.115448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/06/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Transistor-based biosensors represent an emerging technology for inexpensive point-of-care testing (POCT) applications. However, the limited sensitivity of the current transistor technologies hinders their practical deployment. In this study, we developed tri-channel In2O3/ZnO heterojunction thin-film transistors (TFTs) featuring the surface-immobilized enzyme glucose oxidase to detect glucose in various biofluids. This unusual channel design facilitates strong coupling between the electrons transported along the buried In2O3/ZnO heterointerface and the electrostatic perturbations caused by the interactions between glucose and surface-immobilized glucose oxidase. The enzyme selectively binds to glucose, causing a change in charge density on the channel surface. By exploring this effect, the solid-state biosensing TFT (BioTFT) can selectively detect glucose in artificial and real saliva over a wide range of concentrations from 500 nM to 20 mM with limits of detection of ∼365 pM (artificial saliva) and ∼416 nM (real saliva) in less than 60 s. The specificity of the sensor towards glucose has been demonstrated against various interfering species in artificial saliva, further highlighting its unique capabilities. Moreover, the BioTFTs exhibited good operating stability upon storage for up to two weeks, with relative standard deviation (RSD) values ranging from 2.36% to 6.39% for 500 nM glucose concentration. Our BioTFTs are easy to manufacture with reliable operation, making them ideal for non-invasive POCT applications.
Collapse
Affiliation(s)
- Abhinav Sharma
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia.
| | - Wejdan S AlGhamdi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia
| | - Hendrik Faber
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia
| | - Yen-Hung Lin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chien-Hao Liu
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - En-Kai Hsu
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Zhi Lin
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Dipti Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia
| | - Suman Mandal
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia
| | - Martin Heeney
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Myndrul V, Iatsunskyi I, Babayevska N, Jarek M, Jesionowski T. Effect of Electrode Modification with Chitosan and Nafion ® on the Efficiency of Real-Time Enzyme Glucose Biosensors Based on ZnO Tetrapods. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4672. [PMID: 35806796 PMCID: PMC9267381 DOI: 10.3390/ma15134672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
Noninvasive, continuous glucose detection can provide some insights into daily fluctuations in blood glucose levels, which can help us balance diet, exercise, and medication. Since current commercially available glucose sensors can barely provide real-time glucose monitoring and usually imply different invasive sampling, there is an extraordinary need to develop new harmless methods for detecting glucose in non-invasive body fluids. Therefore, it is crucial to design (bio)sensors that can detect very low levels of glucose (down to tens of µM) normally found in sweat or tears. Apart from the selection of materials with high catalytic activity for glucose oxidation, it is also important to pay considerable attention to the electrode functionalization process, as it significantly contributes to the overall detection efficiency. In this study, the (ZnO tetrapods) ZnO TPs-based electrodes were functionalized with Nafion and chitosan polymers to compare their glucose detection efficiency. Cyclic voltammetry (CV) measurements have shown that chitosan-modified ZnO TPs require a lower applied potential for glucose oxidation, which may be due to the larger size of chitosan micelles (compared to Nafion micelles), and thus easier penetration of glucose through the chitosan membrane. However, despite this, both ZnO TPs modified with chitosan and Nafion membranes, provided quite similar glucose detection parameters (sensitivities, 7.5 µA mM-1 cm-1 and 19.2 µA mM-1 cm-1, and limits of detection, 24.4 µM and 22.2 µM, respectively). Our results show that both electrodes have a high potential for accurate real-time sweat/tears glucose detection.
Collapse
Affiliation(s)
- Valerii Myndrul
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej Str., 61614 Poznan, Poland
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej Str., 61614 Poznan, Poland
| | - Nataliya Babayevska
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej Str., 61614 Poznan, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej Str., 61614 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| |
Collapse
|
5
|
He Y, Huang Q, He Y, Ji H, Zhang T, Wang B, Huang Z. A Low Excitation Working Frequency Capacitively Coupled Contactless Conductivity Detection (C 4D) Sensor for Microfluidic Devices. SENSORS 2021; 21:s21196381. [PMID: 34640701 PMCID: PMC8512373 DOI: 10.3390/s21196381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
In this work, a new capacitively coupled contactless conductivity detection (C4D) sensor for microfluidic devices is developed. By introducing an LC circuit, the working frequency of the new C4D sensor can be lowered by the adjustments of the inductor and the capacitance of the LC circuit. The limits of detection (LODs) of the new C4D sensor for conductivity/ion concentration measurement can be improved. Conductivity measurement experiments with KCl solutions were carried out in microfluidic devices (500 µm × 50 µm). The experimental results indicate that the developed C4D sensor can realize the conductivity measurement with low working frequency (less than 50 kHz). The LOD of the C4D sensor for conductivity measurement is estimated to be 2.2 µS/cm. Furthermore, to show the effectiveness of the new C4D sensor for the concentration measurement of other ions (solutions), SO42− and Li+ ion concentration measurement experiments were also carried out at a working frequency of 29.70 kHz. The experimental results show that at low concentrations, the input-output characteristics of the C4D sensor for SO42− and Li+ ion concentration measurement show good linearity with the LODs estimated to be 8.2 µM and 19.0 µM, respectively.
Collapse
Affiliation(s)
| | | | | | - Haifeng Ji
- Correspondence: ; Tel.: +86-571-8795-2145
| | | | | | | |
Collapse
|