Chen A, Zhu J, Lin Q, Liu W. A Comparative Study of Forehead Temperature and Core Body Temperature under Varying Ambient Temperature Conditions.
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022;
19:15883. [PMID:
36497956 PMCID:
PMC9740153 DOI:
10.3390/ijerph192315883]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED
When the ambient temperature, in which a person is situated, fluctuates, the body's surface temperature will alter proportionally. However, the body's core temperature will remain relatively steady. Consequently, using body surface temperature to characterize the core body temperature of the human body in varied situations is still highly inaccurate. This research aims to investigate and establish the link between human body surface temperature and core body temperature in a variety of ambient conditions, as well as the associated conversion curves.
METHODS
Plan an experiment to measure temperature over a thousand times in order to get the corresponding data for human forehead, axillary, and oral temperatures at varying ambient temperatures (14-32 °C). Utilize the axillary and oral temperatures as the core body temperature standards or the control group to investigate the new approach's accuracy, sensitivity, and specificity for detecting fever/non-fever conditions and the forehead temperature as the experimental group. Analyze the statistical connection, data correlation, and agreement between the forehead temperature and the core body temperature.
RESULTS
A total of 1080 tests measuring body temperature were conducted on healthy adults. The average axillary temperature was (36.7 ± 0.41) °C, the average oral temperature was (36.7 ± 0.33) °C, and the average forehead temperature was (36.2 ± 0.30) °C as a result of the shift in ambient temperature. The forehead temperature was 0.5 °C lower than the average of the axillary and oral temperatures. The Pearson correlation coefficient between axillary and oral temperatures was 0.41 (95% CI, 0.28-0.52), between axillary and forehead temperatures was 0.07 (95% CI, -0.07-0.22), and between oral and forehead temperatures was 0.26 (95% CI, 0.11-0.39). The mean differences between the axillary temperature and the oral temperature, the oral temperature and the forehead temperature, and the axillary temperature and the forehead temperature were -0.08 °C, 0.49 °C, and 0.42 °C, respectively, according to a Bland-Altman analysis. Finally, the regression analysis revealed that there was a linear association between the axillary temperature and the forehead temperature, as well as the oral temperature and the forehead temperature due to the change in ambient temperature.
CONCLUSION
The changes in ambient temperature have a substantial impact on the temperature of the forehead. There are significant differences between the forehead and axillary temperatures, as well as the forehead and oral temperatures, when the ambient temperature is low. As the ambient temperature rises, the forehead temperature tends to progressively converge with the axillary and oral temperatures. In clinical or daily applications, it is not advised to utilize the forehead temperature derived from an uncorrected infrared thermometer as the foundation for a body temperature screening in public venues such as hospital outpatient clinics, shopping malls, airports, and train stations.
Collapse