1
|
Shirzadi M, Marateb HR, Rojas-Martínez M, Mansourian M, Botter A, Vieira dos Anjos F, Martins Vieira T, Mañanas MA. A real-time and convex model for the estimation of muscle force from surface electromyographic signals in the upper and lower limbs. Front Physiol 2023; 14:1098225. [PMID: 36923291 PMCID: PMC10009160 DOI: 10.3389/fphys.2023.1098225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Surface electromyography (sEMG) is a signal consisting of different motor unit action potential trains and records from the surface of the muscles. One of the applications of sEMG is the estimation of muscle force. We proposed a new real-time convex and interpretable model for solving the sEMG-force estimation. We validated it on the upper limb during isometric voluntary flexions-extensions at 30%, 50%, and 70% Maximum Voluntary Contraction in five subjects, and lower limbs during standing tasks in thirty-three volunteers, without a history of neuromuscular disorders. Moreover, the performance of the proposed method was statistically compared with that of the state-of-the-art (13 methods, including linear-in-the-parameter models, Artificial Neural Networks and Supported Vector Machines, and non-linear models). The envelope of the sEMG signals was estimated, and the representative envelope of each muscle was used in our analysis. The convex form of an exponential EMG-force model was derived, and each muscle's coefficient was estimated using the Least Square method. The goodness-of-fit indices, the residual signal analysis (bias and Bland-Altman plot), and the running time analysis were provided. For the entire model, 30% of the data was used for estimation, while the remaining 20% and 50% were used for validation and testing, respectively. The average R-square (%) of the proposed method was 96.77 ± 1.67 [94.38, 98.06] for the test sets of the upper limb and 91.08 ± 6.84 [62.22, 96.62] for the lower-limb dataset (MEAN ± SD [min, max]). The proposed method was not significantly different from the recorded force signal (p-value = 0.610); that was not the case for the other tested models. The proposed method significantly outperformed the other methods (adj. p-value < 0.05). The average running time of each 250 ms signal of the training and testing of the proposed method was 25.7 ± 4.0 [22.3, 40.8] and 11.0 ± 2.9 [4.7, 17.8] in microseconds for the entire dataset. The proposed convex model is thus a promising method for estimating the force from the joints of the upper and lower limbs, with applications in load sharing, robotics, rehabilitation, and prosthesis control for the upper and lower limbs.
Collapse
Affiliation(s)
- Mehdi Shirzadi
- Automatic Control Department (ESAII), Biomedical Engineering Research Centre (CREB), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain
| | - Hamid Reza Marateb
- Biomedical Engineering Department, Engineering Faculty, University of Isfahan, Isfahan, Iran
| | - Mónica Rojas-Martínez
- Automatic Control Department (ESAII), Biomedical Engineering Research Centre (CREB), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marjan Mansourian
- Automatic Control Department (ESAII), Biomedical Engineering Research Centre (CREB), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy
| | - Fabio Vieira dos Anjos
- Postgraduate Program of Rehabilitation Sciences, Augusto Motta University (UNISUAM), Rio de Janeiro, Brazil
| | - Taian Martins Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy
| | - Miguel Angel Mañanas
- Automatic Control Department (ESAII), Biomedical Engineering Research Centre (CREB), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
2
|
Zhu Z, Li J, Boyd WJ, Martinez-Luna C, Dai C, Wang H, Wang H, Huang X, Farrell TR, Clancy EA. Myoelectric Control Performance of Two Degree of Freedom Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects. IEEE Trans Neural Syst Rehabil Eng 2022; 30:893-904. [PMID: 35349446 PMCID: PMC9044433 DOI: 10.1109/tnsre.2022.3163149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent research has advanced two degree-of-freedom (DoF), simultaneous, independent and proportional control of hand-wrist prostheses using surface electromyogram signals from remnant muscles as the control input. We evaluated two such regression-based controllers, along with conventional, sequential two-site control with co-contraction mode switching (SeqCon), in box-block, refined-clothespin and door-knob tasks, on 10 able-bodied and 4 limb-absent subjects. Subjects operated a commercial hand and wrist using a socket bypass harness. One 2-DoF controller (DirCon) related the intuitive hand actions of open-close and pronation-supination to the associated prosthesis hand-wrist actions, respectively. The other (MapCon) mapped myoelectrically more distinct, but less intuitive, actions of wrist flexion-extension and ulnar-radial deviation. Each 2-DoF controller was calibrated from separate 90 s calibration contractions. SeqCon performed better statistically than MapCon in the predominantly 1-DoF box-block task (>20 blocks/minute vs. 8-18 blocks/minute, on average). In this task, SeqCon likely benefited from an ability to easily focus on 1-DoF and not inadvertently trigger co-contraction for mode switching. The remaining two tasks require 2-DoFs, and both 2-DoF controllers each performed better (factor of 2-4) than SeqCon. We also compared the use of 12 vs. 6 optimally-selected EMG electrodes as inputs, finding no statistical difference. Overall, we provide further evidence of the benefits of regression-based EMG prosthesis control of 2-DoFs in the hand-wrist.
Collapse
|