1
|
Hidalgo JI, Alvarado J, Botella M, Aramendi A, Velasco JM, Garnica O. HUPA-UCM diabetes dataset. Data Brief 2024; 55:110559. [PMID: 38948410 PMCID: PMC11214197 DOI: 10.1016/j.dib.2024.110559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
This dataset provides a collection of Continuous Glucose Monitoring (CGM) data, insulin dose administration, meal ingestion counted in carbohydrate grams, steps, calories burned, heart rate, and sleep quality and quantity assessment ac- quired from 25 people with type 1 diabetes mellitus (T1DM). CGM data was acquired by FreeStyle Libre 2 CGMs, and Fitbit Ionic smartwatches were used to obtain steps, calories, heart rate, and sleep data for at least 14 days. This dataset could be utilized to obtain glucose prediction models, hypoglycemia and hyperglycemia prediction models, and research on the relationships among sleep, CGM values, and the rest of the mentioned variables. This dataset could be used directly from the preprocessed version or customized from raw data. The data set has been used previously with different machine learning algorithms to predict glucose values, hypo, and hyperglycemia and to analyze influences among the features and the quality and quantity of sleep in people with T1DM.
Collapse
Affiliation(s)
- J. Ignacio Hidalgo
- Universidad Complutense de Madrid, Profesor José García Santesmases 9, Madrid, Spain
| | - Jorge Alvarado
- Universidad de Extremadura, Avda. de Elvas s/n, Badajoz, Spain
| | - Marta Botella
- Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | - Aranzazu Aramendi
- Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | - J. Manuel Velasco
- Universidad Complutense de Madrid, Profesor José García Santesmases 9, Madrid, Spain
| | - Oscar Garnica
- Universidad Complutense de Madrid, Profesor José García Santesmases 9, Madrid, Spain
| |
Collapse
|
2
|
Yang H, Chen Z, Huang J, Li S. AWD-stacking: An enhanced ensemble learning model for predicting glucose levels. PLoS One 2024; 19:e0291594. [PMID: 38354168 PMCID: PMC10866533 DOI: 10.1371/journal.pone.0291594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 02/16/2024] Open
Abstract
Accurate prediction of blood glucose levels is essential for type 1 diabetes optimizing insulin therapy and minimizing complications in patients with type 1 diabetes. Using ensemble learning algorithms is a promising approach. In this regard, this study proposes an improved stacking ensemble learning algorithm for predicting blood glucose level, in which three improved long short-term memory network models are used as the base model, and an improved nearest neighbor propagation clustering algorithm is adaptively weighted to this ensemble model. The OhioT1DM dataset is used to train and evaluate the performance of the proposed model. This study evaluated the performance of the proposed model using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Matthews Correlation Coefficient (MCC) as the evaluation metrics. The experimental results demonstrate that the proposed model achieves an RMSE of 1.425 mg/dL, MAE of 0.721 mg/dL, and MCC of 0.982 mg/dL for a 30-minute prediction horizon(PH), RMSE of 3.212 mg/dL, MAE of 1.605 mg/dL, and MCC of 0.950 mg/dL for a 45-minute PH; and RMSE of 6.346 mg/dL, MAE of 3.232 mg/dL, and MCC of 0.930 mg/dL for a 60-minute PH. Compared with the best non-ensemble model StackLSTM, the RMSE and MAE were improved by up to 27.92% and 65.32%, respectively. Clarke Error Grid Analysis and critical difference diagram revealed that the model errors were within 10%. The model proposed in this study exhibits state-of-the-art predictive performance, making it suitable for clinical decision-making and of significant importance for the effective treatment of diabetes in patients.
Collapse
Affiliation(s)
- HuaZhong Yang
- School of Computer Engineering, Jingchu University of Technology, Jingmen, Hubei, China
- School of Computer Science, Yangtze University, Jingzhou, Hubei, China
| | - Zhongju Chen
- School of Computer Science, Yangtze University, Jingzhou, Hubei, China
| | - Jinfan Huang
- School of Computer Science, Yangtze University, Jingzhou, Hubei, China
| | - Suruo Li
- School of Computer Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| |
Collapse
|
3
|
Yang H, Li W, Tian M, Ren Y. A personalized multitasking framework for real-time prediction of blood glucose levels in type 1 diabetes patients. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:2515-2541. [PMID: 38454694 DOI: 10.3934/mbe.2024111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Real-time prediction of blood glucose levels (BGLs) in individuals with type 1 diabetes (T1D) presents considerable challenges. Accordingly, we present a personalized multitasking framework aimed to forecast blood glucose levels in patients. The patient data was initially categorized according to gender and age and subsequently utilized as input for a modified GRU network model, creating five prediction sub-models. The model hyperparameters were optimized and tuned after introducing the decay factor and incorporating the TCN network and attention mechanism into the GRU model. This step was undertaken to improve the capability of feature extraction. The Ohio T1DM clinical dataset was used to train and evaluate the performance of the proposed model. The metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Clark Error Grid Analysis (EGA), were used to evaluate the performance. The results showed that the average RMSE and the MAE of the proposed model were 16.896 and 9.978 mg/dL, respectively, over the prediction horizon (PH) of 30 minutes. The average RMSE and the MAE were 28.881 and 19.347 mg/dL, respectively, over the PH of 60 min. The proposed model demonstrated excellent prediction accuracy. In addition, the EGA analysis showed that the proposed model accurately predicted 30-minute and 60-minute PH within zones A and B, demonstrating that the framework is clinically feasible. The proposed personalized multitask prediction model in this study offers robust assistance for clinical decision-making, playing a pivotal role in improving the outcomes of individuals with diabetes.
Collapse
Affiliation(s)
- Huazhong Yang
- School of Computer Science, Yangtze University, Jingzhou 434000, China
| | - Wang Li
- Archives, Yangtze University, Jingzhou 434000, China
| | - Maojin Tian
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Yangfeng Ren
- School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
| |
Collapse
|
4
|
Yang T, Yang Q, Zhou Y, Wen C. Glucose trend prediction model based on improved wavelet transform and gated recurrent unit. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17037-17056. [PMID: 37920046 DOI: 10.3934/mbe.2023760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Glucose trend prediction based on continuous glucose monitoring (CGM) data is a crucial step in the implementation of an artificial pancreas (AP). A glucose trend prediction model with high accuracy in real-time can greatly improve the glycemic control effect of the artificial pancreas and effectively prevent the occurrence of hyperglycemia and hypoglycemia. In this paper, we propose an improved wavelet transform threshold denoising algorithm for the non-linearity and non-smoothness of the original CGM data. By quantitatively comparing the mean square error (MSE) and signal-to-noise ratio (SNR) before and after the improvement, we prove that the improved wavelet transform threshold denoising algorithm can reduce the degree of distortion after the smoothing of CGM data and improve the extraction effect of CGM data features at the same time. Based on this finding, we propose a glucose trend prediction model (IWT-GRU) based on the improved wavelet transform threshold denoising algorithm and gated recurrent unit. We compared the root mean square error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination ($ {\mathrm{R}}^{2} $) of Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Support vector regression (SVR), Gated Recurrent Unit (GRU) and IWT-GRU on the original CGM monitoring data of 80 patients for 7 consecutive days with different prediction horizon (PH). The results showed that the IWT-GRU model outperformed the other four models. At PH = 45 min, the RMSE was 0.5537 mmol/L, MAPE was 2.2147%, $ {\mathrm{R}}^{2} $ was 0.989 and the average runtime was only 37.2 seconds. Finally, we analyze the limitations of this study and provide an outlook on the future direction of blood glucose trend prediction.
Collapse
Affiliation(s)
- Tao Yang
- College of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, Sichuan, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Qicheng Yang
- College of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, Sichuan, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Yibo Zhou
- Beijing Certificate Authority Co., Ltd., Beijing 100000, China
| | - Chuanbiao Wen
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou 510000, Guangdong, China
| |
Collapse
|
5
|
Khadem H, Nemat H, Elliott J, Benaissa M. Blood Glucose Level Time Series Forecasting: Nested Deep Ensemble Learning Lag Fusion. Bioengineering (Basel) 2023; 10:487. [PMID: 37106674 PMCID: PMC10135844 DOI: 10.3390/bioengineering10040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Blood glucose level prediction is a critical aspect of diabetes management. It enables individuals to make informed decisions about their insulin dosing, diet, and physical activity. This, in turn, improves their quality of life and reduces the risk of chronic and acute complications. One conundrum in developing time-series forecasting models for blood glucose level prediction is to determine an appropriate length for look-back windows. On the one hand, studying short histories foists the risk of information incompletion. On the other hand, analysing long histories might induce information redundancy due to the data shift phenomenon. Additionally, optimal lag lengths are inconsistent across individuals because of the domain shift occurrence. Therefore, in bespoke analysis, either optimal lag values should be found for each individual separately or a globally suboptimal lag value should be used for all. The former approach degenerates the analysis's congruency and imposes extra perplexity. With the latter, the fine-tunned lag is not necessarily the optimum option for all individuals. To cope with this challenge, this work suggests an interconnected lag fusion framework based on nested meta-learning analysis that improves the accuracy and precision of predictions for personalised blood glucose level forecasting. The proposed framework is leveraged to generate blood glucose prediction models for patients with type 1 diabetes by scrutinising two well-established publicly available Ohio type 1 diabetes datasets. The models developed undergo vigorous evaluation and statistical analysis from mathematical and clinical perspectives. The results achieved underpin the efficacy of the proposed method in blood glucose level time-series prediction analysis.
Collapse
Affiliation(s)
- Heydar Khadem
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UK
| | - Hoda Nemat
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UK
| | - Jackie Elliott
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TN, UK
- Department of Diabetes and Endocrinology, Sheffield Teaching Hospitals, Sheffield S5 7AU, UK
| | - Mohammed Benaissa
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
6
|
Zou Y, Chu Z, Guo J, Liu S, Ma X, Guo J. Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosens Bioelectron 2023; 225:115103. [PMID: 36724658 DOI: 10.1016/j.bios.2023.115103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/25/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Diabetes and its complications are seriously threatening the health and well-being of hundreds of millions of people. Glucose levels are essential indicators of the health conditions of diabetics. Over the past decade, concerted efforts in various fields have led to significant advances in glucose monitoring technology. In particular, the rapid development of continuous glucose monitoring (CGM) based on electrochemical sensing principles has great potential to overcome the limitations of self-monitoring blood glucose (SMBG) in continuously tracking glucose trends, evaluating diabetes treatment options, and improving the quality of life of diabetics. However, the applications of minimally invasive electrochemical CGM sensors are still limited owing to the following aspects: i) invasiveness, ii) short lifespan, iii) biocompatibility, and iv) calibration and prediction. In recent years, the performance of minimally invasive electrochemical CGM systems (CGMSs) has been significantly improved owing to breakthrough developments in new materials and key technologies. In this review, we summarize the history of commercial CGMSs, the development of sensing principles, and the research progress of minimally invasive electrochemical CGM sensors in reducing the invasiveness of implanted probes, maintaining enzyme activity, and improving the biocompatibility of the sensor interface. In addition, this review also introduces calibration algorithms and prediction algorithms applied to CGMSs and describes the application of machine learning algorithms for glucose prediction.
Collapse
Affiliation(s)
- Yuanyuan Zou
- University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Zhengkang Chu
- School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, 611731, Chengdu, China; Chongqing Medical University, 400016, Chongqing, China
| | - Shan Liu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Jinhong Guo
- Chongqing Medical University, 400016, Chongqing, China; School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
7
|
Xue Y, Thalmayer AS, Zeising S, Fischer G, Lübke M. Commercial and Scientific Solutions for Blood Glucose Monitoring-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:425. [PMID: 35062385 PMCID: PMC8780031 DOI: 10.3390/s22020425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a chronic and, according to the state of the art, an incurable disease. Therefore, to treat diabetes, regular blood glucose monitoring is crucial since it is mandatory to mitigate the risk and incidence of hyperglycemia and hypoglycemia. Nowadays, it is common to use blood glucose meters or continuous glucose monitoring via stinging the skin, which is classified as invasive monitoring. In recent decades, non-invasive monitoring has been regarded as a dominant research field. In this paper, electrochemical and electromagnetic non-invasive blood glucose monitoring approaches will be discussed. Thereby, scientific sensor systems are compared to commercial devices by validating the sensor principle and investigating their performance utilizing the Clarke error grid. Additionally, the opportunities to enhance the overall accuracy and stability of non-invasive glucose sensing and even predict blood glucose development to avoid hyperglycemia and hypoglycemia using post-processing and sensor fusion are presented. Overall, the scientific approaches show a comparable accuracy in the Clarke error grid to that of the commercial ones. However, they are in different stages of development and, therefore, need improvement regarding parameter optimization, temperature dependency, or testing with blood under real conditions. Moreover, the size of scientific sensing solutions must be further reduced for a wearable monitoring system.
Collapse
Affiliation(s)
| | | | | | - Georg Fischer
- Institute for Electronics Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 9, 91058 Erlangen, Germany; (Y.X.); (A.S.T.); (S.Z.)
| | - Maximilian Lübke
- Institute for Electronics Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 9, 91058 Erlangen, Germany; (Y.X.); (A.S.T.); (S.Z.)
| |
Collapse
|