1
|
Alammar A, Att W, Beuer F. The Accuracy of 3D-Printed Fixed Dental Restorations. J ESTHET RESTOR DENT 2024. [PMID: 39648648 DOI: 10.1111/jerd.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE The aim of this in vitro study was to evaluate the accuracy of resin-based fixed dental restorations, namely veneers, single crowns, and four-unit fixed partial dental prosthesis (FPDs), using two different 3D printing technologies and polymer-based materials. MATERIALS AND METHODS A standard maxillary polyurethane jaw model containing prepared teeth was scanned using an intraoral scanner. The generated STL data were used to design the restorations virtually using CAD software. Two 3D printers were utilized for the provisional digital light processing and stereolithography for the castable resin patterns. Each printer produced 10 specimens of each type of restoration, for a total of 80 restorations. The 3D-printed restorations were then 3D scanned using the same intraoral scanner and evaluated for external and internal dimensional accuracy in terms of trueness and precision. A one-way ANOVA and two-sample T-test were implemented to compute the precision (variability between groups) and trueness (with the designed CAD model). A level of statistical significance of p-value < 0.05 was set. RESULTS Statistical differences in the external dimensional analysis of the incisors, molars, and four-unit FPD with p-values < 0.001, 0.002, and 0.004, respectively. For the internal dimensional analysis, the overall mean values of trueness ranged between 17 and 52 μm, and the variability was significant. CONCLUSION The external and internal dimensional accuracy values of the 3D-printed fixed dental restorations in this in vitro study in terms of trueness can be clinically accepted after chairside modifications. However, significant variability between the 3D-printed restorations was observed. Further investigations are needed to improve the accuracy of the 3D-printed fixed dental restorations. CLINICAL SIGNIFICANCE In terms of clinical applications, 3D-printed fixed dental restorations produced by both 3D-printing technologies and polymer-based materials achieved acceptable levels of trueness, although some variability was observed. Significant deviations from the CAD model may require further chairside adjustments. Future integration of AI with 3D-printing may further improve the accuracy and efficiency of fixed dental restoration production.
Collapse
Affiliation(s)
- Amirah Alammar
- Department of Prosthodontics, University Hospital Berlin Charité, Berlin, Germany
| | - Wael Att
- Founder and Director, The Face Dental Group, Boston, Massachusetts, USA
| | - Florian Beuer
- Department of Prosthodontics, University Hospital Berlin Charité, Berlin, Germany
| |
Collapse
|
2
|
Gao Y, Zhao M, Xia S, Sa Y. Knowledge structure and research hotspots on digital scanning for implant-supported complete-arch prosthesis: A bibliometric analysis. Heliyon 2024; 10:e36782. [PMID: 39286169 PMCID: PMC11402722 DOI: 10.1016/j.heliyon.2024.e36782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Digital scanning is increasingly widely used for implant-supported complete-arch prosthese. However, a quantitative literature analysis is lacking for this field. This study aims to conduct a bibliometric analysis to summarize the knowledge structure and research hotspots of digital scanning for implant-supported complete-arch prosthesis. Materials and methods Relevant articles and reviews, published between 1994 and 2023, were obtained from the Web of Science Core Collection (WoSCC). Indicators such as publication count, annual growth, citation count, co-citation count, impact factor, Journal citation reports (JCR) division, H-index are used to assess the contribution of countries, journals, authors or the quality of articles. Visual maps, cluster analysis and keyword cloud are used to evaluate the cooperation pattern and topic trends. Results 580 eligible publications, including 555 articles and 25 reviews, were analyzed. The United States is the leading country in this area, received the most citations. The Journal of Prosthetic Dentistry is the scientific journal with the highest impact. The analysis of keywords and ongoing trials shows that the accuracy of relevant techniques is a current hot topic in this field. Conclusion In recent years, digital scanning technique for implant-supported complete-arch prosthesis has made rapid progress. By reviewing the published literature, we found the United States is the global leader in the field of digital scanning for complete-arch implant prosthesis. Accuracy is the core word in this field, more scientific evidence is needed to support the clinical application of digital scanning in this field.
Collapse
Affiliation(s)
- Yutong Gao
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Mingyu Zhao
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Shici Xia
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Yue Sa
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| |
Collapse
|
3
|
Redwan H, Fan Y, Giordano R. Effect of machining damage on the surface roughness and flexural strength of CAD-CAM materials. J Prosthet Dent 2024:S0022-3913(24)00564-X. [PMID: 39256107 DOI: 10.1016/j.prosdent.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
STATEMENT OF PROBLEM Computer-aided design and computer-aided manufacturing (CAD-CAM) materials are available for different types of restorations. However, the longevity of the material is affected by chipping, milling damage, flexural strength, and surface roughness, and a standard edge chipping test or standardized measurements are unavailable for monitoring edge chipping of rotary instrument-milled materials. PURPOSE The purpose of this in vitro study was to analyze the surface roughness and edge chipping of different CAD-CAM diamond rotary instrument-milled dental material bars, correlate the effect of machining damage with material strength, and compare the flexural strength of rotary instrument-milled and sectioned CAD-CAM blocks. MATERIAL AND METHODS Five dental CAD-CAM materials were tested: lithium disilicate glass-ceramic (IPS e.max CAD), leucite-reinforced glass-ceramic (IPS Empress CAD); feldspathic porcelain (Vitablocs Mark II); feldspar ceramic-polymer infiltrated (Enamic), and composite resin (Lava Ultimate). Rectangular bars were designed and milled for each material (n=10). The surface roughness of the bars was measured using a profilometer. All edges of 3 selected bars were analyzed with scanning electron microscopy (SEM) for the chip length, depth, and area. The 3-point bend test was used to test the flexural strength of rotary instrument-milled and saw-cut bars with the same dimensions. Analysis of variance and the Tukey honestly significant difference post hoc test were used to determine the difference among the groups (α=.05). RESULTS IPS e.max CAD had the highest surface roughness and Lava Ultimate the lowest. Lava Ultimate had the smallest chipping factor and IPS Empress CAD the largest. The surface location significantly affected the chipping depth, area, and length (P<.05). A strong correlation was found between the decrease in flexural strength and the chipping length on the central tensile side of the rotary instrument-milled materials (R2=.62, P=.01), as well as the chipping depth (R2=.44, P=.01). CONCLUSIONS Edge chipping was significantly associated with the material type, milling surface, and edge location and strongly correlated with a decrease in flexural strength.
Collapse
Affiliation(s)
- Hetaf Redwan
- Assistant Professor, Department of Restorative Dentistry, College of Dental Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yuwei Fan
- Research Associate Professor, Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Mass.
| | - Russell Giordano
- Professor, Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Mass; Assistant Dean, Biomaterials & Biomaterials Research, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Mass; and Director, Biomaterials Research, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Mass
| |
Collapse
|
4
|
Maiti N, Mahapatra N, Patel D, Chanchad J, Saurabhbhai Shah A, Mahboob Rahaman SK, Surana P. Application of CAD-CAM in Dentistry. Bioinformation 2024; 20:547-550. [PMID: 39132244 PMCID: PMC11309094 DOI: 10.6026/973206300200547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
The application of CAD-CAM (Computer-Aided Design and Computer-Aided Manufacturing) technology has become increasingly prevalent in dentistry in recent years. Dental restorations are designed and created using CAD-CAM by enhancing the precision and efficiency. Customization of dental prostheses such as crowns, veneers, inlays, onlays and bridges is possible with CAD-CAM.
Collapse
Affiliation(s)
- Niladri Maiti
- School of Dentistry, Central Asian University, Tashkent, Uzbekistan
| | - Niva Mahapatra
- Department of Oral and Maxillofacial Pathology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Dhruvi Patel
- Dhanak Dental Hospital, Ahmedabad, Gujarat, India
| | | | | | - SK Mahboob Rahaman
- Department of Conservative Dentistry & Endodontics, North Bengal Dental College & Hospital, Darjeeling, West Bengal - 734012, India
| | - Pratik Surana
- Department of Pedodontics and Preventive Dentistry, Maitri College of Dentistry and Research Centre, Durg, Chhattisgarh, India
| |
Collapse
|
5
|
Tsuchiya H, Takai Y. COVID-19 in Dental Practice Is Prevented by Eugenol Responsible for the Ambient Odor Specific to Dental Offices: Possibility and Speculation. Med Princ Pract 2023; 33:83-89. [PMID: 38147833 PMCID: PMC11095613 DOI: 10.1159/000535966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Dental professionals routinely work in proximity to patients even when either or both of them have suspected or confirmed COVID-19. The oral cavity also serves as a reservoir for SARS-CoV-2 because the virus is present in and replicates in oral secretions (saliva and gingival crevicular fluid), oral tissues (salivary gland and periodontal tissue), and oral microenvironments (gingival sulcus and periodontal pocket). Despite a high risk of SARS-CoV-2 infection, the prevalence of COVID-19 in dentists, dental hygienists, dental assistants, and their patients was similar to that in the general population even during the pandemic. We propose that eugenol, which is responsible for the ambient odor specific to dental offices, could contribute to prevention of COVID-19 in dental settings. Eugenol is not only released from dental materials (filling, cement, and sealer) but is also aerosolized by dental procedures (grinding, polishing, and restoration). Such eugenol has been suggested to possess the potential to inhibit the infectivity and replication of SARS-CoV-2, the entry of SARS-CoV-2 into human cells by binding specifically to the viral spike protein, and the protease indispensable for SARS-CoV-2 replication. It has been shown that aerosolized eugenol acts on airborne viruses to reduce their loads. This review highlights a hypothesis that the environment of dental offices impregnated with eugenol suppresses SARS-CoV-2 airborne transmission and SARS-CoV-2 contagion between dental professionals and patients, preventing COVID-19 in dental practice. Anti-COVID-19 eugenol might give insights into the safe delivery of dental treatment and oral care in the COVID-19 era.
Collapse
Affiliation(s)
| | - Yoshiaki Takai
- Gifu University of Health Sciences, School of Rehabilitation, Gifu, Japan
| |
Collapse
|
6
|
Othman A, Sandmair M, Alevizakos V, von See C. The fracture resistance of 3D-printed versus milled provisional crowns: An in vitro study. PLoS One 2023; 18:e0285760. [PMID: 37656728 PMCID: PMC10473469 DOI: 10.1371/journal.pone.0285760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/29/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND CAD/CAM has considerably transformed the clinical practice of dentistry. In particular, advanced dental materials produced via digital technologies offer unquestionable benefits, such as ideal mechanical stability, outstanding aesthetics and reliable high precision. Additive manufacturing (AM) technology has promoted new innovations, especially in the field of biomedicine. AIMS The aim of this study is to analyze the fracture resistance of implant-supported 3D-printed temporary crowns relative to milled crowns by compression testing. METHODS The study sample included 32 specimens of temporary crowns, which were divided into 16 specimens per group. Each group consisted of eight maxillary central incisor crowns (tooth 11) and eight maxillary molar crowns (tooth 16). The first group (16 specimens) was 3D printed by a mask printer (Varseo, BEGO, Bremen, Germany) with a temporary material (VarseoSmile Temp A3, BEGO, Bremen, Germany). The second group was milled with a millable temporary material (VitaCAD Temp mono-color, Vita, Bad Säckingen, Germany). The two groups were compression tested until failure to estimate their fracture resistance. The loading forces and travel distance until failure were measured. The statistical analysis was performed using SPSS Version 24.0. We performed multiple t tests and considered a significance level of p <0.05. RESULTS The mean fracture force of the printed molars was 1189.50 N (±250.85) with a deformation of 1.75 mm (±0.25). The milled molars reached a mean fracture force of 1817.50 N (±258.22) with a deformation of 1.750 mm (±0.20). The printed incisors fractured at 321.63 N (±145.90) with a deformation of 1.94 mm (±0.40), while the milled incisors fractured at 443.38 N (±113.63) with a deformation of 2.26 mm (±0.40). The milled molar group revealed significantly higher mechanical fracture strength than the 3D-printed molar group (P<0.001). However, no significant differences between the 3D-printed incisors and the milled incisors were found (p = 0.084). There was no significant difference in the travel distance until fracture for both the molar group (p = 1.000) and the incisor group (p = 0.129). CONCLUSION Within the limits of this in vitro investigation, printed and milled temporary crowns withstood masticatory forces and were safe for clinical use.
Collapse
Affiliation(s)
- Ahmed Othman
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Maximillian Sandmair
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Vasilios Alevizakos
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Constantin von See
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| |
Collapse
|
7
|
Rexhepi I, Santilli M, D’Addazio G, Tafuri G, Manciocchi E, Caputi S, Sinjari B. Clinical Applications and Mechanical Properties of CAD-CAM Materials in Restorative and Prosthetic Dentistry: A Systematic Review. J Funct Biomater 2023; 14:431. [PMID: 37623675 PMCID: PMC10455074 DOI: 10.3390/jfb14080431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Clinical outcomes of dental restorations depend primarily on the choice of materials used, and nowadays, dental CAD-CAM (Computer-Aided Design Computer-Aided Manufacturing) materials have strongly changed daily clinical practice. The aim of this systematic review is to analyze CAD-CAM dental materials according to their mechanical properties and in relation to their clinical applications. A literature review was performed on PubMed, Scopus, Web of Knowledge, and the Cochrane Library. Articles addressing at least one of the following topics regarding dental materials for CAD-CAM systems: manufacturers, mechanical features, materials' composition, optical properties, clinical indications, and/or outcomes were included in the review. A flowchart was performed as described in the PRISMA guidelines. Among the 564 articles found, 63 were analyzed and evaluated. Within the limitations of this systematic review, it can be concluded that CAD-CAM materials present a wide range of clinical applications due to their improved mechanical properties. Specifically, in addition to materials that have been in use for a long time (such as feldspathic ceramics), resin block composites can also be used for permanent restorations.
Collapse
Affiliation(s)
- Imena Rexhepi
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (I.R.); (M.S.); (G.D.); (G.T.); (E.M.); (S.C.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Manlio Santilli
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (I.R.); (M.S.); (G.D.); (G.T.); (E.M.); (S.C.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmaria D’Addazio
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (I.R.); (M.S.); (G.D.); (G.T.); (E.M.); (S.C.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppe Tafuri
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (I.R.); (M.S.); (G.D.); (G.T.); (E.M.); (S.C.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Eugenio Manciocchi
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (I.R.); (M.S.); (G.D.); (G.T.); (E.M.); (S.C.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Sergio Caputi
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (I.R.); (M.S.); (G.D.); (G.T.); (E.M.); (S.C.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Bruna Sinjari
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (I.R.); (M.S.); (G.D.); (G.T.); (E.M.); (S.C.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Sultana R, Ahmed I, Saima S, Salam MT, Sultana S. Diabetic foot ulcer-a systematic review on relevant microbial etiology and antibiotic resistance in Asian countries. Diabetes Metab Syndr 2023; 17:102783. [PMID: 37257221 DOI: 10.1016/j.dsx.2023.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS Diabetic foot ulcer (DFU) is one of the most common but uncontrolled health issues of diabetic patients that needs more therapeutic considerations. This systematic review aims to study the current status of the etiological agents responsible for DFU, their frequency in some of the most occurring Asian countries, and their antibiotic resistance pattern based on available studies. METHODS Here, the literature survey was conducted on all the DFU studies with the records of etiological agents and conventional therapeutic treatment published until March 2021 using Medical Literature Analysis and Retrieval System Online (MEDLINE) and Web of Science Core Collection (WoSCC) database. RESULTS Overall, in our study, a total of 73 studies representing 12 Asian countries worldwide have been included. We found that the highest number of studies were reported from India (45%) followed by Pakistan (11%), China, Iran and others. 71% of recent studies reported DFU being attributed to poly-microbial infections while the dominant position was significantly secured by Gram- negative bacteria (77%, p = 0.34). Staphylococcus aureus was found to be the most prevalent isolate followed by Pseudomonas and then Escherichia coli (mean value - 22%, 17%, and 15% respectively). Antibiotic sensitivity pattern was determined based on availability in terms of median resistance (MR) and interquartile range (IQR) which showed the growing resistance developed by both Gram-positive and Gram-negative isolates. Gram positive pathogens were still reported as susceptible to vancomycin (MR 0%, IQR 0-22.8%), linezolid (MR 0%, IQR 0-15.53%) and imipenem (MR 11%, IQR 0-23.53%). Carbapenem genera, colistin, and amikacin were the most effective drugs against Gram-negative pathogens. CONCLUSION The findings of this study highly recommend searching for alternative and complementary therapeutic regimens instead of prescribing conventional drugs blindly without investigating the progression of the stages of the ulcer, which may help reduce the medical and economic burden of this disease.
Collapse
Affiliation(s)
- Rokaia Sultana
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), New Elephant Road, Dhaka, 1205, Bangladesh; Purdue University, West Lafayette, IN, 47907, USA.
| | | | - Sabera Saima
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.
| | | | - Shahnaz Sultana
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), New Elephant Road, Dhaka, 1205, Bangladesh.
| |
Collapse
|
9
|
Tsuchiya H. The Oral Cavity Potentially Serving as a Reservoir for SARS-CoV-2 but Not Necessarily Facilitating the Spread of COVID-19 in Dental Practice. Eur J Dent 2022. [DOI: 10.1055/s-0042-1757909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractIntraoral tissues, secretions, and microenvironments may provide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the conditions necessary for viral cellular entry and inhabitation. The aim of the present study is to overview the oral cavity that potentially serves as a reservoir for SARS-CoV-2, and then discuss the possibility that such oral cavity facilitates the spread of coronavirus disease 2019 (COVID-19) in dental practice. Articles were retrieved from PubMed/Medline, LitCovid, ProQuest, Google Scholar, and preprint medRxiv databases. Results of the literature search indicated that SARS-CoV-2 host cell entry-relevant receptor and virus/cell membrane fusion mediators are expressed in major and minor salivary glands, tongue, taste bud, periodontal tissue, and dental pulp, which would be a target and reservoir for SARS-CoV-2. SARS-CoV-2 is present in saliva and gingival crevicular fluid of COVID-19 patients. These secretions would contaminate dental aerosol and droplet with SARS-CoV-2. SARS-CoV-2 inhabits periodontal pocket, gingival sulcus, and dental caries lesion, which could provide SARS-CoV-2 with a habitat. SARS-CoV-2 ribonucleic acid is preserved in dental calculus, which may inform of the previous infection with SARS-CoV-2. Despite involvement of the oral cavity in SARS-CoV-2 transmission and infection, to date, there have been no clusters of COVID-19 in dental practice. Dental settings are much less likely to facilitate the spread of COVID-19 compared with general medical settings, which may be explained by the situation of dentistry that the number of patients to visit dental offices/clinics was decreased during the COVID-19 pandemic, the characteristics of dentistry that dental professionals have maintained high awareness of viral infection prevention, adhered to a strict protocol for infection control, and been using personal protective equipment for a long time, the experimental results that dental devices generate only small amounts of aerosol responsible for the airborne viral transmission, irrigant from the dental unit contributes to the aerosol microbiota much rather than saliva, and the commonly used evacuation or suction system effectively reduces aerosol and droplet generation, and the possibility that human saliva exhibits the antiviral activity and the property to inhibit SARS-CoV-2 infection. It is considered that dental treatment and oral health care can be delivered safely in the COVID-19 era.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| |
Collapse
|
10
|
Zdiri K, Cayla A, Elamri A, Erard A, Salaun F. Alginate-Based Bio-Composites and Their Potential Applications. J Funct Biomater 2022; 13:jfb13030117. [PMID: 35997455 PMCID: PMC9397003 DOI: 10.3390/jfb13030117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Over the last two decades, bio-polymer fibers have attracted attention for their uses in gene therapy, tissue engineering, wound-healing, and controlled drug delivery. The most commonly used bio-polymers are bio-sourced synthetic polymers such as poly (glycolic acid), poly (lactic acid), poly (e-caprolactone), copolymers of polyglycolide and poly (3-hydroxybutyrate), and natural polymers such as chitosan, soy protein, and alginate. Among all of the bio-polymer fibers, alginate is endowed with its ease of sol–gel transformation, remarkable ion exchange properties, and acid stability. Blending alginate fibers with a wide range of other materials has certainly opened many new opportunities for applications. This paper presents an overview on the modification of alginate fibers with nano-particles, adhesive peptides, and natural or synthetic polymers, in order to enhance their properties. The application of alginate fibers in several areas such as cosmetics, sensors, drug delivery, tissue engineering, and water treatment are investigated. The first section is a brief theoretical background regarding the definition, the source, and the structure of alginate. The second part deals with the physico-chemical, structural, and biological properties of alginate bio-polymers. The third part presents the spinning techniques and the effects of the process and solution parameters on the thermo-mechanical and physico-chemical properties of alginate fibers. Then, the fourth part presents the additives used as fillers in order to improve the properties of alginate fibers. Finally, the last section covers the practical applications of alginate composite fibers.
Collapse
Affiliation(s)
- Khmais Zdiri
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
- Laboratoire de Physique et Mécanique Textiles, École Nationale Supérieure d’Ingénieurs Sud-Alsace, Université de Haute Alsace, EA 4365, 68100 Mulhouse, France
- Correspondence:
| | - Aurélie Cayla
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Adel Elamri
- Unité de Recherche Matériaux et Procédés Textiles, École Nationale d’Ingénieurs de Monastir, Université de Monastir, UR17ES33, Monastir 5019, Tunisia
| | - Annaëlle Erard
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Fabien Salaun
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| |
Collapse
|
11
|
Kim SH, Kim KB, Choo H. New Frontier in Advanced Dentistry: CBCT, Intraoral Scanner, Sensors, and Artificial Intelligence in Dentistry. SENSORS 2022; 22:s22082942. [PMID: 35458927 PMCID: PMC9026979 DOI: 10.3390/s22082942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Seong-Hun Kim
- Department of Orthodontics, Graduate School of Dentistry, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-958-9390
| | - Ki Beom Kim
- Department of Orthodontics, Center for Advanced Dental Education, Saint Louis University, Saint Louis, MO 63104, USA;
| | - HyeRan Choo
- Department of Plastic and Reconstructive Surgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Palo Alto, CA 94304, USA;
| |
Collapse
|