1
|
Abd El-Raheem H, Helim R, Hassan RY, Youssef AF, Korri-Youssoufi H, Kraiya C. Electrochemical methods for the detection of heavy metal ions: From sensors to biosensors. Microchem J 2024; 207:112086. [DOI: 10.1016/j.microc.2024.112086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Guo L, Zhou S, Xue J, Liu Z, Xu S, He Z, Yang H. Signal-enhanced electrochemical sensor employing MWCNTs/CMK-3/AuNPs and Au@Pd core-shell structure for sensitive determination of AFB 1 in complex matrix. Mikrochim Acta 2024; 191:594. [PMID: 39264373 DOI: 10.1007/s00604-024-06665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
A sandwich electrochemical sensor was fabricated based on multi-walled carbon nanotubes/ordered mesoporous carbon/AuNP (MWCNTs/CMK-3/AuNP) nanocomposites and porous core-shell nanoparticles Au@PdNPs to achieve rapid and sensitive detection of AFB1 in complex matrices. MWCNTs/CMK-3/AuNP nanocomposite, which was prepared by self-assembly method, served as a substrate material to increase the aptamer loading and improve the conductivity and electrocatalytic activity of the electrode for the first signal amplification. Then, Au@PdNPs, which were synthesized by one-pot aqueous phase method, were applied as nanocarriers loaded with plenty of capture probe antibody (Ab) and signal molecule toluidine blue (Tb) to form the Au@PdNPs-Ab-Tb bioconjugates for secondary signal amplification. The sensing system could still significantly improve the signal output intensity even in the presence of ultra-low concentration target compound due to the dual signal amplification of MWCNTs/CMK-3/AuNP nanocomposites and Au@PdNPs-Ab-Tb. The method exhibited high selectivity, low detection limit (9.13 fg/mL), and strong stability to differentiate AFB1 from other mycotoxins. Furthermore, the sensor has been successfully applied to the quantitative determination of AFB1 in corn, malt, and six herbs, which has potential applications in food safety, quality control, and environmental monitoring.
Collapse
Affiliation(s)
- Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Shijin Zhou
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Jinyan Xue
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Zenghui Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Shuqing Xu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
3
|
Aihaiti A, Wang J, Zhang W, Shen M, Meng F, Li Z, Zhang Y, Ren M, Zhang M. Recent advances and trends in innovative biosensor-based devices for heavy metal ion detection in food. Compr Rev Food Sci Food Saf 2024; 23:e13358. [PMID: 38923121 DOI: 10.1111/1541-4337.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 06/28/2024]
Abstract
Low-cost, reliable, and efficient biosensors are crucial in detecting residual heavy metal ions (HMIs) in food products. At present, based on distance-induced localized surface plasmon resonance of noble metal nanoparticles, enzyme-mimetic reaction of nanozymes, and chelation reaction of metal chelators, the constructed optical sensors have attracted wide attention in HMIs detection. Besides, based on the enrichment and signal amplification strategy of nanomaterials on HMIs and the construction of electrochemical aptamer sensing platforms, the developed electrochemical biosensors have overcome the plague of low sensitivity, poor selectivity, and the inability of multiplexed detection in the optical strategy. Moreover, along with an in-depth discussion of these different types of biosensors, a detailed overview of the design and application of innovative devices based on these sensing principles was provided, including microfluidic systems, hydrogel-based platforms, and test strip technologies. Finally, the challenges that hinder commercial application have also been mentioned. Overall, this review aims to establish a theoretical foundation for developing accurate and reliable sensing technologies and devices for HMIs, thereby promoting the widespread application of biosensors in the detection of HMIs in food.
Collapse
Affiliation(s)
- Aihemaitijiang Aihaiti
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Jingkang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Wenrui Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mingping Shen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Yukun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Mengyao Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| |
Collapse
|
4
|
Yu H, Zhao Q. Sensitive electrochemical sensor for Cd 2+ with engineered short high-affinity aptamer undergoing large conformation change. Talanta 2024; 271:125642. [PMID: 38237283 DOI: 10.1016/j.talanta.2024.125642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/24/2023] [Accepted: 01/06/2024] [Indexed: 02/24/2024]
Abstract
Cadmium ion (Cd2+) is a highly toxic heavy metal ion that threatens the environment and human health. To achieve rapid and sensitive detection of Cd2+, here we developed a reagent-less aptamer electrochemical sensor by immobilizing an engineered high-affinity DNA aptamer with a redox tag of methylene blue (MB) on the gold electrode. After testing a series of engineered aptamer sequences, we employed an optimal and new 15-mer aptamer with a short 3-bp stem for sensor fabrication, which underwent large conformation change upon Cd2+ binding. This aptamer retained high affinity with a Kd about 360 nM, verified by isothermal titration calorimetry (ITC) analysis. In the presence of Cd2+, this aptamer folded into a stem-loop structure, drawing the MB into a close proximity to the electrode surface and generating enhanced current in square wave voltammetry (SWV). Under the optimized conditions, this aptamer sensor enabled us to sensitively detect Cd2+ in a wide concentration range from 0.5 nM to 4 μM, and the detection limit was 90 pM. The developed electrochemical aptasensor has the advantages in easy preparation, rapid response, high stability, high selectivity and easy regeneration and reuse, showing the potential for Cd2+ detection in broad applications.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
5
|
Nandeshwar R, Tallur S. Electrochemical detection of myeloperoxidase (MPO) in blood plasma with surface-modified electroless nickel immersion gold (ENIG) printed circuit board (PCB) electrodes. Biosens Bioelectron 2024; 246:115891. [PMID: 38056341 DOI: 10.1016/j.bios.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Printed circuit board (PCB) based biosensors have often utilized hard gold electroplating, that nullifies the cost advantages of this technology as compared to screen printed electrodes. Electroless nickel immersion gold (ENIG) is a popular gold deposition process widely used in PCB manufacturing, but vulnerable to pinhole defects and large surface roughness, which compromises biosensor performance. In this work, we present a method to address these challenges through electrodeposition of methylene blue (MB) to cover surface defects and improve electroactivity of ENIG PCB electrodes. We also demonstrate a process to realize in situ synthesis of gold nanoparticles (AuNPs) using acid-functionalized multi-walled carbon nanotubes (MWCNTs) as scaffold, that are used to immobilize antibody for the target molecule (myeloperoxidase: MPO, early warning biomarker for cardiovascular diseases) through a modified cysteamine/gluteraldehyde based process. The processing steps on the electrode surface are developed in a manner that do not compromise the integrity of the electrode, resulting in repeatable and reliable performance of the sensors. Further, we demonstrate a cost-effective microfluidic packaging process to integrate a capillary pump driven microfluidic channel on the PCB electrode for seamless introduction of samples for testing. We demonstrate the ability of the sensor to distinguish clinically abnormal concentrations of MPO from normal concentrations through extensive characterization using spiked serum and blood plasma samples, with a limit of detection of 15.79 ng/mL.
Collapse
Affiliation(s)
- Ruchira Nandeshwar
- Department of Electrical Engineering, IIT Bombay, Mumbai, 400076, India.
| | - Siddharth Tallur
- Department of Electrical Engineering, IIT Bombay, Mumbai, 400076, India.
| |
Collapse
|
6
|
Ali SA, Ayalew H, Gautam B, Selvaraj B, She JW, Janardhanan JA, Yu HH. Detection of SARS-CoV-2 Spike Protein Using Micropatterned 3D Poly(3,4-Ethylenedioxythiophene) Nanorods Decorated with Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38193284 DOI: 10.1021/acsami.3c12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The sensitivity and fabrication process of the detection platform are important for developing viral disease diagnosis. Recently, the outbreak of SARS-CoV-2 compelled us to develop a new detection platform to control such diseases in the future. We present an electrochemical-based assay that employs the unique properties of gold nanoparticles (AuNPs) deposited on 3D carboxyl-functionalized poly(3,4-ethylenedioxythiophene) (PEDOTAc) nanorods for specific and sensitive detection of SARS-CoV-2 spike protein (S1). The 3D-shaped PEDOTAc nanorods offer an ample surface area for receptor immobilization grown on indium-tin oxide surfaces through transfer-printing technology. Characterization via electrochemical, fluorescence, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques confirmed the structural and morphological properties of the AuNPs-decorated PEDOTAc. In contrast to antibody-based assays, our platform employs ACE2 receptors for spike protein binding. Differential pulse voltammetry records current responses, showing linear sensitivity from 100 ng to 10 pg/mL of S1. In addition, the SARS-CoV-2 assay (CoVPNs) also exhibited excellent selectivity against nonspecific target proteins (H9N2, IL-6, and Escherichia coli). Furthermore, the developed surface maintained good stability for up to 7 consecutive days without losing performance. The results provide new insight into effective 3D conductive nanostructure formation, which is promising in the development of versatile sensory devices.
Collapse
Affiliation(s)
- Syed Atif Ali
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Bhaskarchand Gautam
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Baskar Selvaraj
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Jia-Wei She
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30010, Taiwan
| | | | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Wu B, Ga L, Wang Y, Ai J. Recent Advances in the Application of Bionanosensors for the Analysis of Heavy Metals in Aquatic Environments. Molecules 2023; 29:34. [PMID: 38202619 PMCID: PMC10780001 DOI: 10.3390/molecules29010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Heavy-metal ions (HMIs) as a pollutant, if not properly processed, used, and disposed of, will not only have an influence on the ecological environment but also pose significant health hazards to humans, making them a primary factor that endangers human health and harms the environment. Heavy metals come from a variety of sources, the most common of which are agriculture, industry, and sewerage. As a result, there is an urgent demand for portable, low-cost, and effective analytical tools. Bionanosensors have been rapidly developed in recent years due to their advantages of speed, mobility, and high sensitivity. To accomplish effective HMI pollution control, it is important not only to precisely pinpoint the source and content of pollution but also to perform real-time and speedy in situ detection of its composition. This study summarizes heavy-metal-ion (HMI) sensing research advances over the last five years (2019-2023), describing and analyzing major examples of electrochemical and optical bionanosensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, and Zn2+.
Collapse
Affiliation(s)
- Bin Wu
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Yong Wang
- College of Geographical Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| |
Collapse
|
8
|
Azzouz A, Hejji L, Kumar V, Kim KH. Nanomaterials-based aptasensors: An efficient detection tool for heavy-metal and metalloid ions in environmental and biological samples. ENVIRONMENTAL RESEARCH 2023; 238:117170. [PMID: 37722582 DOI: 10.1016/j.envres.2023.117170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur S/n, 23700, Linares, Jaén, Spain
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
9
|
Jarczewska M, Szymczyk A, Zajda J, Olszewski M, Ziółkowski R, Malinowska E. Recent Achievements in Electrochemical and Optical Nucleic Acids Based Detection of Metal Ions. Molecules 2022; 27:7481. [PMID: 36364308 PMCID: PMC9657803 DOI: 10.3390/molecules27217481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2024] Open
Abstract
Recently nucleic acids gained considerable attention as selective receptors of metal ions. This is because of the possibility of adjusting their sequences in new aptamers selection, as well as the convenience of elaborating new detection mechanisms. Such a flexibility allows for easy utilization of newly emerging nanomaterials for the development of detection devices. This, in turn, can significantly increase, e.g., analytical signal intensity, both optical and electrochemical, and the same can allow for obtaining exceptionally low detection limits and fast biosensor responses. All these properties, together with low power consumption, make nucleic acids biosensors perfect candidates as detection elements of fully automatic portable microfluidic devices. This review provides current progress in nucleic acids application in monitoring environmentally and clinically important metal ions in the electrochemical or optical manner. In addition, several examples of such biosensor applications in portable microfluidic devices are shown.
Collapse
Affiliation(s)
- Marta Jarczewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University ofTechnology, Koszykowa 75, 00-664 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
10
|
Chen Z, Xie M, Zhao F, Han S. Application of Nanomaterial Modified Aptamer-Based Electrochemical Sensor in Detection of Heavy Metal Ions. Foods 2022; 11:1404. [PMID: 35626973 PMCID: PMC9140949 DOI: 10.3390/foods11101404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution resulting from significant heavy metal waste discharge is increasingly serious. Traditional methods for the detection of heavy metal ions have high requirements on external conditions, so developing a sensitive, simple, and reproducible detection method is becoming an urgent need. The aptamer, as a new kind of artificial probe, has received more attention in recent years for its high sensitivity, easy acquisition, wide target range, and wide use in the detection of various harmful substances. The detection platform that an aptamer-based electrochemical biosensor (E-apt sensor) provides is a new approach for the detection of heavy metal ions. Nanomaterials are particularly important in the construction of E-apt sensors, as they can be used as aptamer carriers or sensitizers to stimulate or inhibit electrochemical signals, thus significantly improving the detection sensitivity. This review summarizes the application of different types of nanomaterials in E-apt sensors. The construction methods and research progress of the E-apt sensor based on different working principles are systematically introduced. Moreover, the advantages and challenges of the E-apt sensor in heavy metal ion detection are summarized.
Collapse
Affiliation(s)
- Zanlin Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (M.X.)
| | - Miaojia Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (M.X.)
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (M.X.)
| |
Collapse
|
11
|
Inam AKMS, Angeli MAC, Douaki A, Shkodra B, Lugli P, Petti L. An Aptasensor Based on a Flexible Screen-Printed Silver Electrode for the Rapid Detection of Chlorpyrifos. SENSORS 2022; 22:s22072754. [PMID: 35408368 PMCID: PMC9003324 DOI: 10.3390/s22072754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
In this work, we propose a novel disposable flexible and screen-printed electrochemical aptamer-based sensor (aptasensor) for the rapid detection of chlorpyrifos (CPF). To optimize the process, various characterization procedures were employed, including Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Initially, the aptasensor was optimized in terms of electrolyte pH, aptamer concentration, and incubation time for chlorpyrifos. Under optimal conditions, the aptasensor showed a wide linear range from 1 to 105 ng/mL with a calculated limit of detection as low as 0.097 ng/mL and sensitivity of 600.9 µA/ng. Additionally, the selectivity of the aptasensor was assessed by identifying any interference from other pesticides, which were found to be negligible (with a maximum standard deviation of 0.31 mA). Further, the stability of the sample was assessed over time, where the reported device showed high stability over a period of two weeks at 4 °C. As the last step, the ability of the aptasensor to detect chlorpyrifos in actual samples was evaluated by testing it on banana and grape extracts. As a result, the device demonstrated sufficient recovery rates, which indicate that it can find application in the food industry.
Collapse
Affiliation(s)
- A. K. M. Sarwar Inam
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
- Department of Nutrition and Food Engineering, Daffodil International University, Dhaka 1207, Bangladesh
| | - Martina Aurora Costa Angeli
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
- Correspondence:
| | - Ali Douaki
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| | - Bajramshahe Shkodra
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| | - Paolo Lugli
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| | - Luisa Petti
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| |
Collapse
|