1
|
Yan H, Hou W, Lei B, Liu J, Song R, Hao W, Ning Y, Zheng M, Guo H, Pan C, Hu Y, Xiang Y. Ultrarobust stable ABTS radical cation prepared using Spore@Cu-TMA biocomposites for antioxidant capacity assay. Talanta 2024; 276:126282. [PMID: 38788382 DOI: 10.1016/j.talanta.2024.126282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Herein, spore@Cu-trimesic acid (TMA) biocomposites were prepared by self-assembling Cu-based metal-organic framework on the surface of Bacillus velezensis spores. The laccase-like activity of spore@Cu-TMA biocomposites was enhanced by 14.9 times compared with that of pure spores due to the reaction of Cu2+ ions with laccase on the spore surface and the microporous structure of Cu-TMA shell promoting material transport and increasing substrate accessibility. Spore@Cu-TMA rapidly oxidized and transformed 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) into ABTS●+ without using H2O2. Under optimum conditions, the ABTS●+ could be stored for 21 days at 4 °C and 7 days at 37 °C without the addition of any stabilizers, allowing for the large-scale preparation and long-term storage of ABTS●+. The ultrarobust stable ABTS●+ obtained with the use of Cu-TMA could effectively reduce the "back reaction" by preventing the leaching of the metabolites released by the spores. On the basis of these findings, a rapid, low-cost, and eco-friendly colorimetric platform was successfully developed for the detection of antioxidant capacity. Determination of antioxidant capacity for several antioxidants such as caffeic acid, glutathione, and Trolox revealed their corresponding limits of detection at 4.83, 8.89, and 7.39 nM, respectively, with linear ranges of 0.01-130, 0.01-140, and 0.01-180 μM, respectively. This study provides a facile way to prepare ultrarobust stable ABTS●+ and presents a potential application of spore@Cu-TMA biocomposites in food detection and bioanalysis.
Collapse
Affiliation(s)
- Huaduo Yan
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Wenjing Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Binglin Lei
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - JunJun Liu
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Henan Agricultural University, Zhengzhou, 450046, China
| | - Runze Song
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenbo Hao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuchang Ning
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Ming Zheng
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Hongwei Guo
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Chunmei Pan
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China.
| | - Yonggang Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuqiang Xiang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Henan Agricultural University, Zhengzhou, 450046, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Kordkatooli E, Bacha K, Villaume S, Dorey S, Monboisse JC, Brassart-Pasco S, Mbakidi JP, Bouquillon S. L-Rhamnose and Phenolic Esters-Based Monocatenar and Bolaform Amphiphiles: Eco-Compatible Synthesis and Determination of Their Antioxidant, Eliciting and Cytotoxic Properties. Molecules 2023; 28:5154. [PMID: 37446816 DOI: 10.3390/molecules28135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Symmetrical and dissymmetrical bolaforms were prepared with good to high yields from unsaturated L-rhamnosides and phenolic esters (ferulic, phloretic, coumaric, sinapic and caffeic) using two eco-compatible synthetic strategies involving glycosylation, enzymatic synthesis and cross-metathesis under microwave activation. The plant-eliciting activity of these new compounds was investigated in Arabidopsis model plants. We found that the monocatenar rhamnosides and bolaforms activate the plant immune system with a response depending on the carbon chain length and the nature of the hydrophilic heads. Their respective antioxidant activities were also evaluated, as well as their cytotoxic properties on dermal cells for cosmetic uses. We showed that phenolic ester-based compounds present good antioxidant activities and that their cytotoxicity is low. These properties are also dependent on the carbon chains used.
Collapse
Affiliation(s)
- Emad Kordkatooli
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, 51687 Reims, France
| | - Katia Bacha
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, 51687 Reims, France
| | - Sandra Villaume
- RIBP-USC INRAE 1488, Université de Reims Champagne-Ardenne Reims, 51100 Reims, France
| | - Stephan Dorey
- RIBP-USC INRAE 1488, Université de Reims Champagne-Ardenne Reims, 51100 Reims, France
| | - Jean-Claude Monboisse
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369-Reims Champagne Ardenne University, UFR Médecine, 51 Rue Cognacq Jay, 51095 Reims, France
| | - Sylvie Brassart-Pasco
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369-Reims Champagne Ardenne University, UFR Médecine, 51 Rue Cognacq Jay, 51095 Reims, France
| | - Jean-Pierre Mbakidi
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, 51687 Reims, France
| | - Sandrine Bouquillon
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, 51687 Reims, France
| |
Collapse
|
3
|
Wu D, Karimi-Maleh H, Liu X, Fu L. Bibliometrics Analysis of Research Progress of Electrochemical Detection of Tetracycline Antibiotics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:6443610. [PMID: 36852208 PMCID: PMC9966827 DOI: 10.1155/2023/6443610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 06/18/2023]
Abstract
Tetracycline is a broad-spectrum class of antibiotics. The use of excessive doses of tetracycline antibiotics can result in their residues in food, posing varying degrees of risk to human health. Therefore, the establishment of a rapid and sensitive field detection method for tetracycline residues is of great practical importance to improve the safety of food-derived animal foods. Electrochemical analysis techniques are widely used in the field of pollutant detection because of the simple detection principle, easy operation of the instrument, and low cost of analysis. In this review, we summarize the electrochemical detection of tetracycline antibiotics by bibliometrics. Unlike the previously published reviews, this article reviews and analyzes the development of this topic. The contributions of different countries and different institutions were analyzed. Keyword analysis was used to explain the development of different research directions. The results of the analysis revealed that developments and innovations in materials science can enhance the performance of electrochemical detection of tetracycline antibiotics. Among them, gold nanoparticles and carbon nanotubes are the most used nanomaterials. Aptamer sensing strategies are the most favored methodologies in electrochemical detection of tetracycline antibiotics.
Collapse
Affiliation(s)
- Dihua Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu 610056, China
- Department of Chemical Engineering and Energy, Laboratory of Nanotechnology, Quchan University of Technology, Quchan 94771-67335, Iran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
4
|
Mostafazadeh R, Karimi-Maleh H, Ghaffarinejad A, Tajabadi F, Hamidian Y. Highly sensitive electrochemical sensor based on carbon paste electrode modified with graphene nanoribbon-CoFe 2O 4@NiO and ionic liquid for azithromycin antibiotic monitoring in biological and pharmaceutical samples. APPLIED NANOSCIENCE 2023; 13:1-10. [PMID: 36710715 PMCID: PMC9870783 DOI: 10.1007/s13204-023-02773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
In this report, Azithromycin (Azi) antibiotic was measured by carbon paste electrode (CPE) improved by graphene nanoribbon-CoFe2O4@NiO nanocomposite and 1-hexyl-3 methylimidazolium hexafluorophosphate (HMIM PF6) as an ionic liquid binder. The electrochemical behavior of Azi on the graphene nanoribbon-CoFe2O4@NiO/HMIM PF6/CPE is investigated by voltammetric methods, and the results showed that the modifiers improve the conductivity and electrochemical activity of the CPE. According to obtained data, the electrochemical behavior of Azi is related to pH. under optimum conditions, the sensor has linear ranges from 10 µM to 2 mM with a LOD of 0.66 µM. The effect of scan rate and chronoamperometry were studied, which showed that the Azi electro-oxidation is diffusion controlled with the diffusion coefficient of 9.22 × 10-6 cm2/s. The reproducibility (3.15%), repeatability (2.5%), selectivity, and stability (for 30 days) tests were investigated, which results were acceptable. The actual sample analysis confirmed that the proposed sensor is an appropriate electrochemical tool for Azi determination in urine and Azi capsule.
Collapse
Affiliation(s)
- Reza Mostafazadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P.O. Box 611731, Chengdu, People’s Republic of China
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
| | - Fariba Tajabadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Yasamin Hamidian
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, 16315-1618 Iran
| |
Collapse
|
5
|
Anti- and Pro-Oxidant Activity of Polyphenols Extracts of Syrah and Chardonnay Grapevine Pomaces on Melanoma Cancer Cells. Antioxidants (Basel) 2022; 12:antiox12010080. [PMID: 36670942 PMCID: PMC9855015 DOI: 10.3390/antiox12010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The phenolic composition of Syrah and Chardonnay grape pomaces was studied to assess their antioxidant and prooxidant properties. Polyphenols were extracted by a "green" hydroalcoholic solvent (ethanol/water 1:1 v/v), and a detailed chemical and electrochemical characterization of the phenolic compounds was performed. The antioxidant and prooxidant capacity of the pomace was first studied by cyclic voltammetry (CV) and other reference analytical assays, then with biological tests on B16F10 metastatic melanoma cancer cells. Electrochemical data showed that, when a +0.5 V potential was applied, a low to moderate antioxidant capacity was observed. MTT test showed an increasing viability of melanoma cells, after treatments at low concentration (up to 100 μg/mL) and for a short time (6 h), but when cells were treated with higher doses of extract (≥250 μg/mL for 12/24 h), their viability decreased from 25 to 50% vs. control, depending on treatment time, dose, and extract origin. A stronger prooxidant activity resulted when 250 μg/mL of extract was combined with non-toxic doses of H2O2; this activity was correlated with the presence of copper in the extracts. This study shows the potential of winemaking by-products and suggests the opportunity to exploit them for the production of cosmeceuticals, or for combined therapies with approved anticancer drugs.
Collapse
|
6
|
Li X, Zheng Y, Wu W, Jin M, Zhou Q, Fu L, Zare N, Karimi F, Moghadam M. Graphdiyne applications in sensors: A bibliometric analysis and literature review. CHEMOSPHERE 2022; 307:135720. [PMID: 35843425 DOI: 10.1016/j.chemosphere.2022.135720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Graphdiyne is a two-dimensional carbon nanomaterial synthesized artificially in 2010. Its outstanding performance is considered to have great potential in different fields. This article summarizes the work of graphdiyne in the sensing field by literature summary and bibliometrics analysis. The development of graphdiyne in the field of sensing has gone through a process from theoretical calculation to experimental verification. Especially in the last three years, there has been very rapid development. The theoretical calculations suggest that graphdiyne is an excellent gas sensing material, but there is little experimental evidence in this direction. On the contrary, graphdiyne has been widely reported in the field of electrochemical sensing. At the same time, graphdiyne can also be used as a molecular switch for DNA sequencing. Fluorescent sensors based on graphdiyne have also been reported. In general, the potential of graphdiyne in sensing still needs to be explored. Current research results do not show that graphdiyne has irreplaceable advantages in sensing. The bibliometric analysis used in this review also provides cooperative network analysis and co-citation analysis on this topic. This provides a reference for the audience wishing to undertake research on the topic. In addition, according to the analysis, we also listed the direction that which this field deserves attention in the future.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, 210014, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|
7
|
Xiang S, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. CHEMOSPHERE 2022; 306:135517. [PMID: 35787882 DOI: 10.1016/j.chemosphere.2022.135517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Acetaminophen is a widely used analgesic throughout the world. Detection of acetaminophen has particular value in pharmacy and clinics. Electrochemical sensors assembled with advanced materials are an effective method for the rapid detection of acetaminophen. Graphene-based carbon nanomaterials have been extensively investigated for potential analytical applications in the last decade. In this article, we selected papers containing both graphene and acetaminophen. Bibliometrics was used to analyze the relationships and trends among these papers. The results show that the topic has grown at a high rate since 2009. Among them, the detection of acetaminophen by an electrochemical sensor based on graphene is the most important direction. Graphene has moved from being a primary sensing material to a substrate for immobilization of other active ingredients. In addition, the degradation of acetaminophen using graphene-modified electrodes is also an important direction. We analyzed the research history and current status of this topic through bibliometrics. Authors, institutions, countries, and key literature were discussed. We also proposed perspectives for this topic.
Collapse
Affiliation(s)
- Shuyan Xiang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
8
|
Li Z. The Value of GeneXpert MTB/RIF for Detection in Tuberculosis: A Bibliometrics-Based Analysis and Review. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2915018. [PMID: 36284547 PMCID: PMC9588380 DOI: 10.1155/2022/2915018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
With the continuous development of medical science and technology, especially with the advent of the era of precision diagnosis and treatment, molecular biology detection technology is widely valued and applied as an aid to early diagnosis of tuberculosis. The GeneXpert Mycobacterium tuberculosis Branching (MTB) technology is a suite of semi-nested real-time fluorescent quantitative PCR in vitro diagnostic technologies developed by Cepheid Inc. It targets the rifampicin resistance gene, rpoB, and can detect both MTB and resistance to rifampicin within 2 h. This review analyzed the papers related to GeneXpert using bibliometric software CiteSpace and Bibliometrix. A total of 151 articles were analyzed, spanning from 2011 to 2021. This bibliometrics-based review summarizes the history of the development of GeneXpert in tuberculosis diagnosis and its current status. Contributions of different countries to the topic, journal analysis, key paper analysis, and clustering of keywords were used to analyze this topic.
Collapse
Affiliation(s)
- Zhiyi Li
- Laboratory Medicine, Nanan Hospital, Nanan, Quanzhou 362300, Fujian, China
| |
Collapse
|
9
|
Jin M, Liu J, Yu J, Zhou Q, Wu W, Fu L, Yin C, Fernandez C, Karimi-Maleh H. Current development and future challenges in microplastic detection techniques: A bibliometrics-based analysis and review. Sci Prog 2022; 105:368504221132151. [PMID: 36263507 PMCID: PMC10306156 DOI: 10.1177/00368504221132151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Microplastics have been considered a new type of pollutant in the marine environment and have attracted widespread attention worldwide in recent years. Plastic particles with particle size less than 5 mm are usually defined as microplastics. Because of their similar size to plankton, marine organisms easily ingest microplastics and can threaten higher organisms and even human health through the food chain. Most of the current studies have focused on the investigation of the abundance of microplastics in the environment. However, due to the limitations of analytical methods and instruments, the number of microplastics in the environment can easily lead to overestimation or underestimation. Microplastics in each environment have different detection techniques. To investigate the current status, hot spots, and research trends of microplastics detection techniques, this review analyzed the papers related to microplastics detection using bibliometric software CiteSpace and COOC. A total of 696 articles were analyzed, spanning 2012 to 2021. The contributions and cooperation of different countries and institutions in this field have been analyzed in detail. This topic has formed two main important networks of cooperation. International cooperation has been a common pattern in this topic. The various analytical methods of this topic were discussed through keyword and clustering analysis. Among them, fluorescent, FTIR and micro-Raman spectroscopy are commonly used optical techniques for the detection of microplastics. The identification of microplastics can also be achieved by the combination of other techniques such as mass spectrometry/thermal cracking gas chromatography. However, these techniques still have limitations and cannot be applied to all environmental samples. We provide a detailed analysis of the detection of microplastics in different environmental samples and list the challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, China
| | - Jie Yu
- Department of Environment Engineering, China Jiliang University, Hangzhou, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital, Beijing, China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
10
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
11
|
A Systematic Review and Bibliometric Analysis of Flame-Retardant Rigid Polyurethane Foam from 1963 to 2021. Polymers (Basel) 2022; 14:polym14153011. [PMID: 35893975 PMCID: PMC9332328 DOI: 10.3390/polym14153011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/17/2022] Open
Abstract
Flame-retardant science and technology are sciences developed to prevent the occurrence of fire, meet the needs of social safety production, and protect people's lives and property. Rigid polyurethane (PU) is a polymer formed by the additional polymerization reaction of a molecule with two or more isocyanate functional groups with a polyol containing two or more reactive hydroxyl groups under a suitable catalyst and in an appropriate ratio. Rigid polyurethane foam (RPUF) is a foam-like material with a large contact area with oxygen when burning, resulting in rapid combustion. At the same time, RPUF produces a lot of toxic gases when burning and endangers human health. Improving the flame-retardant properties of RPUF is an important theme in flame-retardant science and technology. This review discusses the development of flame-retardant RPUF through the lens of bibliometrics. A total of 194 articles are analyzed, spanning from 1963 to 2021. We describe the development and focus of this theme at different stages. The various directions of this theme are discussed through keyword co-occurrence and clustering analysis. Finally, we provide reasonable perspectives about the future research direction of this theme based on the bibliometric results.
Collapse
|
12
|
Electrochemical Immunoassay for Tumor Marker CA19-9 Detection Based on Self-Assembled Monolayer. Molecules 2022; 27:molecules27144578. [PMID: 35889454 PMCID: PMC9324264 DOI: 10.3390/molecules27144578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 12/10/2022] Open
Abstract
A CA19-9 electrochemical immunosensor was constructed using a hybrid self-assembled membrane modified with a gold electrode and applied to detect real samples. Hybrid self-assembled membranes were selected for electrode modification and used to detect antigens. First, the pretreated working electrodes were placed in a 3-mercaptopropionic acid (MPA)/β-mercaptoethanol (ME) mixture for 24 h for self-assembly. The electrodes were then placed in an EDC/NHS mixture for 1 h. Layer modification was performed by stepwise dropwise addition of CA19-9 antibody, BSA, and antigen. Differential pulse voltammetry was used to characterize this immunosensor preparation process. The assembled electrochemical immunosensor enables linear detection in the concentration range of 0.05–500 U/mL of CA19-9, and the detection limit was calculated as 0.01 U/mL. The results of the specificity measurement test showed that the signal change of the interfering substance was much lower than the response value of the detected antigen, indicating that the sensor has good specificity and strong anti-interference ability. The repeatability test results showed that the relative standard deviations were less than 5%, showing good accuracy and precision. The CA19-9 electrochemical immunosensor was used for the actual sample detection, and the experimental results of the standard serum addition method showed that the RSD values of the test concentrations were all less than 10%. The recoveries were 102.4–115.0%, indicating that the assay has high precision, good accuracy, and high potential application value.
Collapse
|