1
|
Hwang J, Youm C, Park H, Kim B, Choi H, Cheon SM. Machine learning for early detection and severity classification in people with Parkinson's disease. Sci Rep 2025; 15:234. [PMID: 39747207 PMCID: PMC11695740 DOI: 10.1038/s41598-024-83975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Early detection of Parkinson's disease (PD) and accurate assessment of disease progression are critical for optimizing treatment and rehabilitation. However, there is no consensus on how to effectively detect early-stage PD and classify motor symptom severity using gait analysis. This study evaluated the accuracy of machine learning models in classifying early and moderate-stages of PD based on spatiotemporal gait features at different walking speeds. A total of 178 participants were recruited, including 103 individuals with PD (61 early-stage, 42 moderate-stage) and 75 healthy controls. Participants performed a walking test on a 24-m walkway at three speeds: preferred walking speed (PWS), 20% faster (HWS), and 20% slower (LWS). Key features-walking speed at PWS, stride length at HWS, and the coefficient of variation (CV) of the stride length at LWS-achieved a classification accuracy of 78.1% using the random forest algorithm. For early PD detection, the stride length at HWS and CV of the stride length at LWS provided an accuracy of 67.3% with Naïve Bayes. Walking at PWS was the most critical feature for distinguishing early from moderate PD, with an accuracy of 69.8%. These findings suggest that assessing gait over consecutive steps under different speed conditions may improve the early detection and severity assessment of individuals with PD.
Collapse
Affiliation(s)
- Juseon Hwang
- Department of Health Sciences, The Graduate School of Dong-A University, 37 Nakdong-Daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Changhong Youm
- Department of Health Sciences, The Graduate School of Dong-A University, 37 Nakdong-Daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Hwayoung Park
- Biomechanics Laboratory, Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Bohyun Kim
- Biomechanics Laboratory, Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Hyejin Choi
- Department of Health Sciences, The Graduate School of Dong-A University, 37 Nakdong-Daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Sang-Myung Cheon
- Department of Neurology, School of Medicine, Dong-A University, Seo-gu, Busan, Republic of Korea
| |
Collapse
|
2
|
Navita, Mittal P, Sharma YK, Rai AK, Simaiya S, Lilhore UK, Kumar V. Gait-based Parkinson's disease diagnosis and severity classification using force sensors and machine learning. Sci Rep 2025; 15:328. [PMID: 39747956 PMCID: PMC11696931 DOI: 10.1038/s41598-024-83357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
A dual-stage model for classifying Parkinson's disease severity, through a detailed analysis of Gait signals using force sensors and machine learning approaches, is proposed in this study. Parkinson's disease is the primary neurodegenerative disorder that results in a gradual reduction in motor function. Early detection and monitoring of the disease progression is highly challenging due to the gradual progression of symptoms and the inadequacy of conventional methods in identifying subtle changes in mobility. The proposed dual-stage model utilized a hypertuned Random Forest Tree (RFT) to classify the subjects into PD and non-PD classes at Stage 1 and a hypertuned Ensemble Regressor (ER) to predict the severity of illness at Stage 2. Further, we have implemented the proposed model on the data signals gathered from both feet of 166 participants using Vertical Ground Reaction Force Sensors (VGRF). The dataset comprised 93 persons with Parkinson's disease and 73 healthy controls. The dataset (imbalance) collected from both feet is passed to the preprocessing phase (for balancing data using the SMOTE method), followed by the feature extraction phase to extract features related to time, frequency, spatial, and temporal features domains that are highly effective for detecting and assigning severity levels of PD. A Recursive Feature Elimination method is also used to select the optimal set of features to improve the model performance. It is acknowledged that the early detection of Parkinson's disease is contingent upon critical parameters, including stride length, stance duration, swing interval, double limb support, step time, and step length. The crucial evaluation metrics used for evaluating model performance include accuracy, mean absolute error, and root mean square error. The findings indicate that the suggested model significantly surpasses current methodologies. It attained an accuracy of 97.5 ± 2.1%, Sensitivity of 97% ± 2.5%, and average Specificity of 95% ± 2.2% in differentiating between PD and non-PD participants utilizing RFT and evaluated disease severity with an average accuracy of 96.4 ± 2.3%, an average mean absolute error of 0.065 ± 0.024, and a root mean square error of 0.080 ± 0.06. The results indicate that the proposed dual-stage model is exceptionally successful in the early detection and severity assessment of Parkinson's disease and demonstrates better efficacy than alternative models.
Collapse
Affiliation(s)
- Navita
- Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja Mittal
- Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Yogesh Kumar Sharma
- Department of Computer Science & Engineering, KoneruLakshmaiah Education Foundation, Green Field, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Anjani Kumar Rai
- Department of CEA, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Sarita Simaiya
- Department of Computer Science & Engineering, Galgotias University, Greater Noida, Uttar Pradesh, India.
- Arba Minch University, Arba Minch, Ethiopia.
| | - Umesh Kumar Lilhore
- Department of Computer Science & Engineering, Galgotias University, Greater Noida, Uttar Pradesh, India.
| | - Vimal Kumar
- Department of Computer Science & Engineering, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Park H, Shin S, Youm C, Cheon SM. Deep learning-based detection of affected body parts in Parkinson's disease and freezing of gait using time-series imaging. Sci Rep 2024; 14:23732. [PMID: 39390087 PMCID: PMC11467382 DOI: 10.1038/s41598-024-75445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
We proposed a deep learning method using a convolutional neural network on time-series (TS) images to detect and differentiate affected body parts in people with Parkinson's disease (PD) and freezing of gait (FOG) during 360° turning tasks. The 360° turning task was performed by 90 participants (60 people with PD [30 freezers and 30 nonfreezers] and 30 age-matched older adults (controls) at their preferred speed. The position and acceleration underwent preprocessing. The analysis was expanded from temporal to visual data using TS imaging methods. According to the PD vs. controls classification, the right lower third of the lateral shank (RTIB) on the least affected side (LAS) and the right calcaneus (RHEE) on the LAS were the most relevant body segments in the position and acceleration TS images. The RHEE marker exhibited the highest accuracy in the acceleration TS images. The identified markers for the classification of freezers vs. nonfreezers vs. controls were the left lateral humeral epicondyle (LELB) on the more affected side and the left posterior superior iliac spine (LPSI). The LPSI marker in the acceleration TS images displayed the highest accuracy. This approach could be a useful supplementary tool for determining PD severity and FOG.
Collapse
Affiliation(s)
- Hwayoung Park
- Biomechanics Laboratory, Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Sungtae Shin
- Department of Mechanical Engineering, College of Engineering, Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Changhong Youm
- Biomechanics Laboratory, Dong-A University, Saha-gu, Busan, Republic of Korea.
- Department of Health Sciences, Dong-A University Graduate School, Saha-gu, Busan, Republic of Korea.
- Department of Healthcare and Science, College of Health Sciences, Dong-A University, 37 Nakdong‑daero, 550 Beon‑gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Sang-Myung Cheon
- Department of Neurology, School of Medicine, Dong-A University, 26 Daesingongwon-ro, Seo-gu, Busan, 49201, Republic of Korea.
| |
Collapse
|
4
|
He J, Wu L, Du W, Zhang F, Lin S, Ling Y, Ren K, Chen Z, Chen H, Su W. Instrumented timed up and go test and machine learning-based levodopa response evaluation: a pilot study. J Neuroeng Rehabil 2024; 21:163. [PMID: 39294708 PMCID: PMC11409684 DOI: 10.1186/s12984-024-01452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The acute levodopa challenge test (ALCT) is a universal method for evaluating levodopa response (LR). Assessment of Movement Disorder Society's Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) is a key step in ALCT, which is some extent subjective and inconvenience. METHODS This study developed a machine learning method based on instrumented Timed Up and Go (iTUG) test to evaluate the patients' response to levodopa and compared it with classic ALCT. Forty-two patients with parkinsonism were recruited and administered with levodopa. MDS-UPDRS III and the iTUG were conducted in both OFF-and ON-medication state. Kinematic parameters, signal time and frequency domain features were extracted from sensor data. Two XGBoost models, levodopa response regression (LRR) model and motor symptom evaluation (MSE) model, were trained to predict the levodopa response (LR) of the patients using leave-one-subject-out cross-validation. RESULTS The LR predicted by the LRR model agreed with that calculated by the classic ALCT (ICC = 0.95). When the LRR model was used to detect patients with a positive LR, the positive predictive value was 0.94. CONCLUSIONS Machine learning based on wearable sensor data and the iTUG test may be effective and comprehensive for evaluating LR and predicting the benefit of dopaminergic therapy.
Collapse
Affiliation(s)
- Jing He
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Lingyu Wu
- GYENNO SCIENCE CO., LTD, Shenzhen, 518000, People's Republic of China
- HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan, 430074, People's Republic of China
| | - Wei Du
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Fei Zhang
- GYENNO SCIENCE CO., LTD, Shenzhen, 518000, People's Republic of China
- HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan, 430074, People's Republic of China
| | - Shinuan Lin
- GYENNO SCIENCE CO., LTD, Shenzhen, 518000, People's Republic of China
- HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan, 430074, People's Republic of China
| | - Yun Ling
- GYENNO SCIENCE CO., LTD, Shenzhen, 518000, People's Republic of China
- HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan, 430074, People's Republic of China
| | - Kang Ren
- GYENNO SCIENCE CO., LTD, Shenzhen, 518000, People's Republic of China
- HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan, 430074, People's Republic of China
| | - Zhonglue Chen
- GYENNO SCIENCE CO., LTD, Shenzhen, 518000, People's Republic of China.
- HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan, 430074, People's Republic of China.
| | - Haibo Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Wen Su
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| |
Collapse
|
5
|
Franco A, Russo M, Amboni M, Ponsiglione AM, Di Filippo F, Romano M, Amato F, Ricciardi C. The Role of Deep Learning and Gait Analysis in Parkinson's Disease: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:5957. [PMID: 39338702 PMCID: PMC11435660 DOI: 10.3390/s24185957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Parkinson's disease (PD) is the second most common movement disorder in the world. It is characterized by motor and non-motor symptoms that have a profound impact on the independence and quality of life of people affected by the disease, which increases caregivers' burdens. The use of the quantitative gait data of people with PD and deep learning (DL) approaches based on gait are emerging as increasingly promising methods to support and aid clinical decision making, with the aim of providing a quantitative and objective diagnosis, as well as an additional tool for disease monitoring. This will allow for the early detection of the disease, assessment of progression, and implementation of therapeutic interventions. In this paper, the authors provide a systematic review of emerging DL techniques recently proposed for the analysis of PD by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Scopus, PubMed, and Web of Science databases were searched across an interval of six years (between 2018, when the first article was published, and 2023). A total of 25 articles were included in this review, which reports studies on the movement analysis of PD patients using both wearable and non-wearable sensors. Additionally, these studies employed DL networks for classification, diagnosis, and monitoring purposes. The authors demonstrate that there is a wide employment in the field of PD of convolutional neural networks for analyzing signals from wearable sensors and pose estimation networks for motion analysis from videos. In addition, the authors discuss current difficulties and highlight future solutions for PD monitoring and disease progression.
Collapse
Affiliation(s)
- Alessandra Franco
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy; (A.F.); (M.R.); (A.M.P.); (M.R.); (F.A.)
| | - Michela Russo
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy; (A.F.); (M.R.); (A.M.P.); (M.R.); (F.A.)
| | - Marianna Amboni
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (M.A.); (F.D.F.)
| | - Alfonso Maria Ponsiglione
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy; (A.F.); (M.R.); (A.M.P.); (M.R.); (F.A.)
| | - Federico Di Filippo
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (M.A.); (F.D.F.)
| | - Maria Romano
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy; (A.F.); (M.R.); (A.M.P.); (M.R.); (F.A.)
| | - Francesco Amato
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy; (A.F.); (M.R.); (A.M.P.); (M.R.); (F.A.)
| | - Carlo Ricciardi
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy; (A.F.); (M.R.); (A.M.P.); (M.R.); (F.A.)
| |
Collapse
|
6
|
Khalil RM, Shulman LM, Gruber-Baldini AL, Shakya S, Fenderson R, Van Hoven M, Hausdorff JM, von Coelln R, Cummings MP. Simplification of Mobility Tests and Data Processing to Increase Applicability of Wearable Sensors as Diagnostic Tools for Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2024; 24:4983. [PMID: 39124030 PMCID: PMC11314738 DOI: 10.3390/s24154983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Quantitative mobility analysis using wearable sensors, while promising as a diagnostic tool for Parkinson's disease (PD), is not commonly applied in clinical settings. Major obstacles include uncertainty regarding the best protocol for instrumented mobility testing and subsequent data processing, as well as the added workload and complexity of this multi-step process. To simplify sensor-based mobility testing in diagnosing PD, we analyzed data from 262 PD participants and 50 controls performing several motor tasks wearing a sensor on their lower back containing a triaxial accelerometer and a triaxial gyroscope. Using ensembles of heterogeneous machine learning models incorporating a range of classifiers trained on a set of sensor features, we show that our models effectively differentiate between participants with PD and controls, both for mixed-stage PD (92.6% accuracy) and a group selected for mild PD only (89.4% accuracy). Omitting algorithmic segmentation of complex mobility tasks decreased the diagnostic accuracy of our models, as did the inclusion of kinesiological features. Feature importance analysis revealed that Timed Up and Go (TUG) tasks to contribute the highest-yield predictive features, with only minor decreases in accuracy for models based on cognitive TUG as a single mobility task. Our machine learning approach facilitates major simplification of instrumented mobility testing without compromising predictive performance.
Collapse
Affiliation(s)
- Rana M. Khalil
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA;
| | - Lisa M. Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Ann L. Gruber-Baldini
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.L.G.-B.); (S.S.)
| | - Sunita Shakya
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.L.G.-B.); (S.S.)
| | - Rebecca Fenderson
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Maxwell Van Hoven
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6492416, Israel;
- Department of Physical Therapy, Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rainer von Coelln
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Michael P. Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
7
|
Russo M, Amboni M, Volzone A, Cuoco S, Camicioli R, Di Filippo F, Barone P, Romano M, Amato F, Ricciardi C. Kinematic and Kinetic Gait Features Associated With Mild Cognitive Impairment in Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2676-2687. [PMID: 39028606 DOI: 10.1109/tnsre.2024.3431234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Mild cognitive impairment (MCI) and gait deficits are commonly associated with Parkinson's disease (PD). Early detection of MCI associated with Parkinson's disease (PD-MCI) and its biomarkers is critical to managing disability in PD patients, reducing caregiver burden and healthcare costs. Gait is considered a surrogate marker for cognitive decline in PD. However, gait kinematic and kinetic features in PD-MCI patients remain unknown. This study was designed to explore the difference in gait kinematics and kinetics during single-task and dual-task walking between PD patients with and without MCI. Kinematic and kinetic data of 90 PD patients were collected using 3D motion capture system. Differences in gait kinematic and kinetic gait features between groups were identified by using: first, univariate statistical analysis and then a supervised machine learning analysis. The findings of this study showed that the presence of MCI in PD patients is coupled with kinematic and kinetic deviations of gait cycle which may eventually identify two different phenotypes of the disease. Indeed, as shown by the demographical and clinical comparison between the two groups, PD-MCI patients were older and more impaired. Moreover, PD-MCI kinematic results showed that cognitive dysfunction coexists with more severe axial symptoms and an increase postural flexion. A lack of physiological distal-to-proximal shift in joint kinetics was evidenced in the PD phenotype associated with cognitive impairments.
Collapse
|
8
|
Trabassi D, Castiglia SF, Bini F, Marinozzi F, Ajoudani A, Lorenzini M, Chini G, Varrecchia T, Ranavolo A, De Icco R, Casali C, Serrao M. Optimizing Rare Disease Gait Classification through Data Balancing and Generative AI: Insights from Hereditary Cerebellar Ataxia. SENSORS (BASEL, SWITZERLAND) 2024; 24:3613. [PMID: 38894404 PMCID: PMC11175240 DOI: 10.3390/s24113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.
Collapse
Affiliation(s)
- Dante Trabassi
- Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; (D.T.); (C.C.); (M.S.)
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; (D.T.); (C.C.); (M.S.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (F.B.); (F.M.)
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (F.B.); (F.M.)
| | - Arash Ajoudani
- Department of Advanced Robotics, Italian Institute of Technology, 16163 Genoa, Italy; (A.A.); (M.L.)
| | - Marta Lorenzini
- Department of Advanced Robotics, Italian Institute of Technology, 16163 Genoa, Italy; (A.A.); (M.L.)
| | - Giorgia Chini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; (G.C.); (T.V.); (A.R.)
| | - Tiwana Varrecchia
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; (G.C.); (T.V.); (A.R.)
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; (G.C.); (T.V.); (A.R.)
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; (D.T.); (C.C.); (M.S.)
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; (D.T.); (C.C.); (M.S.)
- Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy
| |
Collapse
|
9
|
Huang J, Lin L, Yu F, He X, Song W, Lin J, Tang Z, Yuan K, Li Y, Huang H, Pei Z, Xian W, Yu-Chian Chen C. Parkinson's severity diagnosis explainable model based on 3D multi-head attention residual network. Comput Biol Med 2024; 170:107959. [PMID: 38215619 DOI: 10.1016/j.compbiomed.2024.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
The severity evaluation of Parkinson's disease (PD) is of great significance for the treatment of PD. However, existing methods either have limitations based on prior knowledge or are invasive methods. To propose a more generalized severity evaluation model, this paper proposes an explainable 3D multi-head attention residual convolution network. First, we introduce the 3D attention-based convolution layer to extract video features. Second, features will be fed into LSTM and residual backbone networks, which can be used to capture the contextual information of the video. Finally, we design a feature compression module to condense the learned contextual features. We develop some interpretable experiments to better explain this black-box model so that it can be better generalized. Experiments show that our model can achieve state-of-the-art diagnosis performance. The proposed lightweight but effective model is expected to serve as a suitable end-to-end deep learning baseline in future research on PD video-based severity evaluation and has the potential for large-scale application in PD telemedicine. The source code is available at https://github.com/JackAILab/MARNet.
Collapse
Affiliation(s)
- Jiehui Huang
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China
| | - Fengcheng Yu
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xuedong He
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Wenhui Song
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaying Lin
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhenchao Tang
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kang Yuan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China
| | - Yucheng Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China
| | - Haofan Huang
- Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China.
| | - Wenbiao Xian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China.
| | - Calvin Yu-Chian Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China; School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China; Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
10
|
Marimon X, Mengual I, López-de-Celis C, Portela A, Rodríguez-Sanz J, Herráez IA, Pérez-Bellmunt A. Kinematic Analysis of Human Gait in Healthy Young Adults Using IMU Sensors: Exploring Relevant Machine Learning Features for Clinical Applications. Bioengineering (Basel) 2024; 11:105. [PMID: 38391591 PMCID: PMC10886386 DOI: 10.3390/bioengineering11020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Gait is the manner or style of walking, involving motor control and coordination to adapt to the surrounding environment. Knowing the kinesthetic markers of normal gait is essential for the diagnosis of certain pathologies or the generation of intelligent ortho-prostheses for the treatment or prevention of gait disorders. The aim of the present study was to identify the key features of normal human gait using inertial unit (IMU) recordings in a walking test. METHODS Gait analysis was conducted on 32 healthy participants (age range 19-29 years) at speeds of 2 km/h and 4 km/h using a treadmill. Dynamic data were obtained using a microcontroller (Arduino Nano 33 BLE Sense Rev2) with IMU sensors (BMI270). The collected data were processed and analyzed using a custom script (MATLAB 2022b), including the labeling of the four relevant gait phases and events (Stance, Toe-Off, Swing, and Heel Strike), computation of statistical features (64 features), and application of machine learning techniques for classification (8 classifiers). RESULTS Spider plot analysis revealed significant differences in the four events created by the most relevant statistical features. Among the different classifiers tested, the Support Vector Machine (SVM) model using a Cubic kernel achieved an accuracy rate of 92.4% when differentiating between gait events using the computed statistical features. CONCLUSIONS This study identifies the optimal features of acceleration and gyroscope data during normal gait. The findings suggest potential applications for injury prevention and performance optimization in individuals engaged in activities involving normal gait. The creation of spider plots is proposed to obtain a personalised fingerprint of each patient's gait fingerprint that could be used as a diagnostic tool. A deviation from a normal gait pattern can be used to identify human gait disorders. Moving forward, this information has potential for use in clinical applications in the diagnosis of gait-related disorders and developing novel orthoses and prosthetics to prevent falls and ankle sprains.
Collapse
Affiliation(s)
- Xavier Marimon
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
- Automatic Control Department, Universitat Politècnica de Catalunya (UPC-BarcelonaTECH), 08034 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Itziar Mengual
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
| | - Carlos López-de-Celis
- ACTIUM Research Group, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
- Institut Universitari d'Investigació en Atenció Primària (IDIAP Jordi Gol), 08007 Barcelona, Spain
| | - Alejandro Portela
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
| | - Jacobo Rodríguez-Sanz
- ACTIUM Research Group, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
| | - Iria Andrea Herráez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
| | - Albert Pérez-Bellmunt
- ACTIUM Research Group, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
| |
Collapse
|
11
|
Bibbo D, De Marchis C, Schmid M, Ranaldi S. Machine learning to detect, stage and classify diseases and their symptoms based on inertial sensor data: a mapping review. Physiol Meas 2023; 44:12TR01. [PMID: 38061062 DOI: 10.1088/1361-6579/ad133b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
This article presents a systematic review aimed at mapping the literature published in the last decade on the use of machine learning (ML) for clinical decision-making through wearable inertial sensors. The review aims to analyze the trends, perspectives, strengths, and limitations of current literature in integrating ML and inertial measurements for clinical applications. The review process involved defining four research questions and applying four relevance assessment indicators to filter the search results, providing insights into the pathologies studied, technologies and setups used, data processing schemes, ML techniques applied, and their clinical impact. When combined with ML techniques, inertial measurement units (IMUs) have primarily been utilized to detect and classify diseases and their associated motor symptoms. They have also been used to monitor changes in movement patterns associated with the presence, severity, and progression of pathology across a diverse range of clinical conditions. ML models trained with IMU data have shown potential in improving patient care by objectively classifying and predicting motor symptoms, often with a minimally encumbering setup. The findings contribute to understanding the current state of ML integration with wearable inertial sensors in clinical practice and identify future research directions. Despite the widespread adoption of these technologies and techniques in clinical applications, there is still a need to translate them into routine clinical practice. This underscores the importance of fostering a closer collaboration between technological experts and professionals in the medical field.
Collapse
Affiliation(s)
- Daniele Bibbo
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Rome, Italy
| | | | - Maurizio Schmid
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Rome, Italy
| | - Simone Ranaldi
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Rome, Italy
| |
Collapse
|
12
|
Biró A, Cuesta-Vargas AI, Szilágyi L. AI-Assisted Fatigue and Stamina Control for Performance Sports on IMU-Generated Multivariate Times Series Datasets. SENSORS (BASEL, SWITZERLAND) 2023; 24:132. [PMID: 38202992 PMCID: PMC10781393 DOI: 10.3390/s24010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Optimal sports performance requires a balance between intensive training and adequate rest. IMUs provide objective, quantifiable data to analyze performance dynamics, despite the challenges in quantifying athlete training loads. The ability of AI to analyze complex datasets brings innovation to the monitoring and optimization of athlete training cycles. Traditional techniques rely on subjective assessments to prevent overtraining, which can lead to injury and underperformance. IMUs provide objective, quantitative data on athletes' physical status during action. AI and machine learning can turn these data into useful insights, enabling data-driven athlete performance management. With IMU-generated multivariate time series data, this paper uses AI to construct a robust model for predicting fatigue and stamina. MATERIALS AND METHODS IMUs linked to 19 athletes recorded triaxial acceleration, angular velocity, and magnetic orientation throughout repeated sessions. Standardized training included steady-pace runs and fatigue-inducing techniques. The raw time series data were used to train a supervised ML model based on frequency and time-domain characteristics. The performances of Random Forest, Gradient Boosting Machines, and LSTM networks were compared. A feedback loop adjusted the model in real time based on prediction error and bias estimation. RESULTS The AI model demonstrated high predictive accuracy for fatigue, showing significant correlations between predicted fatigue levels and observed declines in performance. Stamina predictions enabled individualized training adjustments that were in sync with athletes' physiological thresholds. Bias correction mechanisms proved effective in minimizing systematic prediction errors. Moreover, real-time adaptations of the model led to enhanced training periodization strategies, reducing the risk of overtraining and improving overall athletic performance. CONCLUSIONS In sports performance analytics, the AI-assisted model using IMU multivariate time series data is effective. Training can be tailored and constantly altered because the model accurately predicts fatigue and stamina. AI models can effectively forecast the beginning of weariness before any physical symptoms appear. This allows for timely interventions to prevent overtraining and potential accidents. The model shows an exceptional ability to customize training programs according to the physiological reactions of each athlete and enhance the overall training effectiveness. In addition, the study demonstrated the model's efficacy in real-time monitoring performance, improving the decision-making abilities of both coaches and athletes. The approach enables ongoing and thorough data analysis, supporting strategic planning for training and competition, resulting in optimized performance outcomes. These findings highlight the revolutionary capability of AI in sports science, offering a future where data-driven methods greatly enhance athlete training and performance management.
Collapse
Affiliation(s)
- Attila Biró
- Department of Physiotherapy, University of Malaga, 29071 Malaga, Spain;
- Department of Electrical Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Str. Nicolae Iorga, Nr. 1, 540088 Targu Mures, Romania
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Antonio Ignacio Cuesta-Vargas
- Department of Physiotherapy, University of Malaga, 29071 Malaga, Spain;
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
- Faculty of Health Science, School of Clinical Science, Queensland University Technology, Brisbane 4000, Australia
| | - László Szilágyi
- Physiological Controls Research Center, Óbuda University, 1034 Budapest, Hungary;
- Computational Intelligence Research Group, Sapientia Hungarian University of Transylvania, 540485 Targu Mures, Romania
| |
Collapse
|
13
|
Nakanishi K, Goto H. A New Index for the Quantitative Evaluation of Surgical Invasiveness Based on Perioperative Patients' Behavior Patterns: Machine Learning Approach Using Triaxial Acceleration. JMIR Perioper Med 2023; 6:e50188. [PMID: 37962919 PMCID: PMC10685283 DOI: 10.2196/50188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The minimally invasive nature of thoracoscopic surgery is well recognized; however, the absence of a reliable evaluation method remains challenging. We hypothesized that the postoperative recovery speed is closely linked to surgical invasiveness, where recovery signifies the patient's behavior transition back to their preoperative state during the perioperative period. OBJECTIVE This study aims to determine whether machine learning using triaxial acceleration data can effectively capture perioperative behavior changes and establish a quantitative index for quantifying variations in surgical invasiveness. METHODS We trained 7 distinct machine learning models using a publicly available human acceleration data set as supervised data. The 3 top-performing models were selected to predict patient actions, as determined by the Matthews correlation coefficient scores. Two patients who underwent different levels of invasive thoracoscopic surgery were selected as participants. Acceleration data were collected via chest sensors for 8 hours during the preoperative and postoperative hospitalization days. These data were categorized into 4 actions (walking, standing, sitting, and lying down) using the selected models. The actions predicted by the model with intermediate results were adopted as the actions of the participants. The daily appearance probability was calculated for each action. The 2 differences between 2 appearance probabilities (sitting vs standing and lying down vs walking) were calculated using 2 coordinates on the x- and y-axes. A 2D vector composed of coordinate values was defined as the index of behavior pattern (iBP) for the day. All daily iBPs were graphed, and the enclosed area and distance between points were calculated and compared between participants to assess the relationship between changes in the indices and invasiveness. RESULTS Patients 1 and 2 underwent lung lobectomy and incisional tumor biopsy, respectively. The selected predictive model was a light-gradient boosting model (mean Matthews correlation coefficient 0.98, SD 0.0027; accuracy: 0.98). The acceleration data yielded 548,466 points for patient 1 and 466,407 points for patient 2. The iBPs of patient 1 were [(0.32, 0.19), (-0.098, 0.46), (-0.15, 0.13), (-0.049, 0.22)] and those of patient 2 were [(0.55, 0.30), (0.77, 0.21), (0.60, 0.25), (0.61, 0.31)]. The enclosed areas were 0.077 and 0.0036 for patients 1 and 2, respectively. Notably, the distances for patient 1 were greater than those for patient 2 ({0.44, 0.46, 0.37, 0.26} vs {0.23, 0.0065, 0.059}; P=.03 [Mann-Whitney U test]). CONCLUSIONS The selected machine learning model effectively predicted the actions of the surgical patients with high accuracy. The temporal distribution of action times revealed changes in behavior patterns during the perioperative phase. The proposed index may facilitate the recognition and visualization of perioperative changes in patients and differences in surgical invasiveness.
Collapse
Affiliation(s)
- Kozo Nakanishi
- Department of General Thoracic Surgery, National Hospital Organization Saitama Hospital, Wako Saitama, Japan
| | - Hidenori Goto
- Department of General Thoracic Surgery, National Hospital Organization Saitama Hospital, Wako Saitama, Japan
| |
Collapse
|
14
|
Xie J, Zhao H, Cao J, Qu Q, Cao H, Liao WH, Lei Y, Guo L. Wearable multisource quantitative gait analysis of Parkinson's diseases. Comput Biol Med 2023; 164:107270. [PMID: 37478714 DOI: 10.1016/j.compbiomed.2023.107270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
As the motor symptoms of Parkinson's disease (PD) are complex and influenced by many factors, it is challenging to quantify gait abnormalities adequately using a single type of signal. Therefore, a wearable multisource gait monitoring system is developed to perform a quantitative analysis of gait abnormalities for improving the effectiveness of the clinical diagnosis. To detect multisource gait data for an accurate evaluation of gait abnormalities, force sensitive sensors, piezoelectric sensors, and inertial measurement units are integrated into the devised device. The modulation circuits and wireless framework are designed to simultaneously collect plantar pressure, dynamic deformation, and postural angle of the foot and then wirelessly transmit these collected data. With the designed system, multisource gait data from PD patients and healthy controls are collected. Multisource features for quantifying gait abnormalities are extracted and evaluated by a significance test of difference and correlation analysis. The results show that the features extracted from every single type of data are able to quantify the health status of the subjects (p < 0.001, ρ > 0.50). More importantly, the validity of multisource gait data is verified. The results demonstrate that the gait feature fusing multisource data achieves a maximum correlation coefficient of 0.831, a maximum Area Under Curve of 0.9206, and a maximum feature-based classification accuracy of 88.3%. The system proposed in this study can be applied to the gait analysis and objective evaluation of PD.
Collapse
Affiliation(s)
- Junxiao Xie
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huan Zhao
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junyi Cao
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongmei Cao
- Department of Neurology, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei-Hsin Liao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Yaguo Lei
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Linchuan Guo
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
15
|
Gupta R, Kumari S, Senapati A, Ambasta RK, Kumar P. New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson's disease. Ageing Res Rev 2023; 90:102013. [PMID: 37429545 DOI: 10.1016/j.arr.2023.102013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of neuronal cells, which leads to synaptic dysfunction and cognitive defects. Despite the advancements in treatment strategies, the management of PD is still a challenging event. Early prediction and diagnosis of PD are of utmost importance for effective management of PD. In addition, the classification of patients with PD as compared to normal healthy individuals also imposes drawbacks in the early diagnosis of PD. To address these challenges, artificial intelligence (AI) and machine learning (ML) models have been implicated in the diagnosis, prediction, and treatment of PD. Recent times have also demonstrated the implication of AI and ML models in the classification of PD based on neuroimaging methods, speech recording, gait abnormalities, and others. Herein, we have briefly discussed the role of AI and ML in the diagnosis, treatment, and identification of novel biomarkers in the progression of PD. We have also highlighted the role of AI and ML in PD management through altered lipidomics and gut-brain axis. We briefly explain the role of early PD detection through AI and ML algorithms based on speech recordings, handwriting patterns, gait abnormalities, and neuroimaging techniques. Further, the review discuss the potential role of the metaverse, the Internet of Things, and electronic health records in the effective management of PD to improve the quality of life. Lastly, we also focused on the implementation of AI and ML-algorithms in neurosurgical process and drug discovery.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | | | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| |
Collapse
|
16
|
Redhya M, Sathesh Kumar K. Refining PD classification through ensemble bionic machine learning architecture with adaptive threshold based image denoising. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Kim H, Kim JW, Ko J. Adaptive Control Method for Gait Detection and Classification Devices with Inertial Measurement Unit. SENSORS (BASEL, SWITZERLAND) 2023; 23:6638. [PMID: 37514932 PMCID: PMC10385410 DOI: 10.3390/s23146638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Cueing and feedback training can be effective in maintaining or improving gait in individuals with Parkinson's disease. We previously designed a rehabilitation assist device that can detect and classify a user's gait at only the swing phase of the gait cycle, for the ease of data processing. In this study, we analyzed the impact of various factors in a gait detection algorithm on the gait detection and classification rate (GDCR). We collected acceleration and angular velocity data from 25 participants (1 male and 24 females with an average age of 62 ± 6 years) using our device and analyzed the data using statistical methods. Based on these results, we developed an adaptive GDCR control algorithm using several equations and functions. We tested the algorithm under various virtual exercise scenarios using two control methods, based on acceleration and angular velocity, and found that the acceleration threshold was more effective in controlling the GDCR (average Spearman correlation -0.9996, p < 0.001) than the gyroscopic threshold. Our adaptive control algorithm was more effective in maintaining the target GDCR than the other algorithms (p < 0.001) with an average error of 0.10, while other tested methods showed average errors of 0.16 and 0.28. This algorithm has good scalability and can be adapted for future gait detection and classification applications.
Collapse
Affiliation(s)
- Hyeonjong Kim
- Division of Mechanical Engineering, (National) Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Ji-Won Kim
- Division of Biomedical Engineering, Konkuk University, Chungju 27478, Republic of Korea
- BK21 Plus Research Institute of Biomedical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Junghyuk Ko
- Division of Mechanical Engineering, (National) Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
18
|
Manto M, Serrao M, Filippo Castiglia S, Timmann D, Tzvi-Minker E, Pan MK, Kuo SH, Ugawa Y. Neurophysiology of cerebellar ataxias and gait disorders. Clin Neurophysiol Pract 2023; 8:143-160. [PMID: 37593693 PMCID: PMC10429746 DOI: 10.1016/j.cnp.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
There are numerous forms of cerebellar disorders from sporadic to genetic diseases. The aim of this chapter is to provide an overview of the advances and emerging techniques during these last 2 decades in the neurophysiological tests useful in cerebellar patients for clinical and research purposes. Clinically, patients exhibit various combinations of a vestibulocerebellar syndrome, a cerebellar cognitive affective syndrome and a cerebellar motor syndrome which will be discussed throughout this chapter. Cerebellar patients show abnormal Bereitschaftpotentials (BPs) and mismatch negativity. Cerebellar EEG is now being applied in cerebellar disorders to unravel impaired electrophysiological patterns associated within disorders of the cerebellar cortex. Eyeblink conditioning is significantly impaired in cerebellar disorders: the ability to acquire conditioned eyeblink responses is reduced in hereditary ataxias, in cerebellar stroke and after tumor surgery of the cerebellum. Furthermore, impaired eyeblink conditioning is an early marker of cerebellar degenerative disease. General rules of motor control suggest that optimal strategies are needed to execute voluntary movements in the complex environment of daily life. A high degree of adaptability is required for learning procedures underlying motor control as sensorimotor adaptation is essential to perform accurate goal-directed movements. Cerebellar patients show impairments during online visuomotor adaptation tasks. Cerebellum-motor cortex inhibition (CBI) is a neurophysiological biomarker showing an inverse association between cerebellothalamocortical tract integrity and ataxia severity. Ataxic gait is characterized by increased step width, reduced ankle joint range of motion, increased gait variability, lack of intra-limb inter-joint and inter-segmental coordination, impaired foot ground placement and loss of trunk control. Taken together, these techniques provide a neurophysiological framework for a better appraisal of cerebellar disorders.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgium
- Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, Corso della Repubblica 79 04100, Latina, Italy
- Gait Analysis LAB Policlinico Italia, Via Del Campidano 6 00162, Rome, Italy
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, Corso della Repubblica 79 04100, Latina, Italy
- Gait Analysis LAB Policlinico Italia, Via Del Campidano 6 00162, Rome, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi, 21, 27100 Pavia, Italy
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elinor Tzvi-Minker
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
- Syte Institute, Hamburg, Germany
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 64041, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
19
|
Endalie D, Abebe WT. Analysis of lung cancer risk factors from medical records in Ethiopia using machine learning. PLOS DIGITAL HEALTH 2023; 2:e0000308. [PMID: 37467222 DOI: 10.1371/journal.pdig.0000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Cancer is a broad term that refers to a wide range of diseases that can affect any part of the human body. To minimize the number of cancer deaths and to prepare an appropriate health policy on cancer spread mitigation, scientifically supported knowledge of cancer causes is critical. As a result, in this study, we analyzed lung cancer risk factors that lead to a highly severe cancer case using a decision tree-based ranking algorithm. This feature relevance ranking algorithm computes the weight of each feature of the dataset by using split points to improve detection accuracy, and each risk factor is weighted based on the number of observations that occur for it on the decision tree. Coughing of blood, air pollution, and obesity are the most severe lung cancer risk factors out of nine, with a weight of 39%, 21%, and 14%, respectively. We also proposed a machine learning model that uses Extreme Gradient Boosting (XGBoost) to detect lung cancer severity levels in lung cancer patients. We used a dataset of 1000 lung cancer patients and 465 individuals free from lung cancer from Tikur Ambesa (Black Lion) Hospital in Addis Ababa, Ethiopia, to assess the performance of the proposed model. The proposed cancer severity level detection model achieved 98.9%, 99%, and 98.9% accuracy, precision, and recall, respectively, for the testing dataset. The findings can assist governments and non-governmental organizations in making lung cancer-related policy decisions.
Collapse
Affiliation(s)
- Demeke Endalie
- Faculty of Computing and Informatics, Jimma Institute of Technology, Jimma, Ethiopia
| | - Wondmagegn Taye Abebe
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma, Ethiopia
| |
Collapse
|
20
|
Pedrero-Sánchez JF, Belda-Lois JM, Serra-Añó P, Mollà-Casanova S, López-Pascual J. Classification of Parkinson's disease stages with a two-stage deep neural network. Front Aging Neurosci 2023; 15:1152917. [PMID: 37333459 PMCID: PMC10272759 DOI: 10.3389/fnagi.2023.1152917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Parkinson's disease is one of the most prevalent neurodegenerative diseases. In the most advanced stages, PD produces motor dysfunction that impairs basic activities of daily living such as balance, gait, sitting, or standing. Early identification allows healthcare personnel to intervene more effectively in rehabilitation. Understanding the altered aspects and impact on the progression of the disease is important for improving the quality of life. This study proposes a two-stage neural network model for the classifying the initial stages of PD using data recorded with smartphone sensors during a modified Timed Up & Go test. Methods The proposed model consists on two stages: in the first stage, a semantic segmentation of the raw sensor signals classifies the activities included in the test and obtains biomechanical variables that are considered clinically relevant parameters for functional assessment. The second stage is a neural network with three input branches: one with the biomechanical variables, one with the spectrogram image of the sensor signals, and the third with the raw sensor signals. Results This stage employs convolutional layers and long short-term memory. The results show a mean accuracy of 99.64% for the stratified k-fold training/validation process and 100% success rate of participants in the test phase. Discussion The proposed model is capable of identifying the three initial stages of Parkinson's disease using a 2-min functional test. The test easy instrumentation requirements and short duration make it feasible for use feasible in the clinical context.
Collapse
Affiliation(s)
| | - Juan Manuel Belda-Lois
- Instituto de Biomecánica (IBV), Universitat Politècnica de València, Valencia, Spain
- Department of Mechanical and Materials Engineering (DIMM), Universitat Politècnica de València, Valencia, Spain
| | - Pilar Serra-Añó
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de València, Valencia, Spain
| | - Sara Mollà-Casanova
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de València, Valencia, Spain
| | - Juan López-Pascual
- Instituto de Biomecánica (IBV), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
21
|
Castiglia SF, Trabassi D, Conte C, Ranavolo A, Coppola G, Sebastianelli G, Abagnale C, Barone F, Bighiani F, De Icco R, Tassorelli C, Serrao M. Multiscale Entropy Algorithms to Analyze Complexity and Variability of Trunk Accelerations Time Series in Subjects with Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2023; 23:4983. [PMID: 37430896 DOI: 10.3390/s23104983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The aim of this study was to assess the ability of multiscale sample entropy (MSE), refined composite multiscale entropy (RCMSE), and complexity index (CI) to characterize gait complexity through trunk acceleration patterns in subjects with Parkinson's disease (swPD) and healthy subjects, regardless of age or gait speed. The trunk acceleration patterns of 51 swPD and 50 healthy subjects (HS) were acquired using a lumbar-mounted magneto-inertial measurement unit during their walking. MSE, RCMSE, and CI were calculated on 2000 data points, using scale factors (τ) 1-6. Differences between swPD and HS were calculated at each τ, and the area under the receiver operating characteristics, optimal cutoff points, post-test probabilities, and diagnostic odds ratios were calculated. MSE, RCMSE, and CIs showed to differentiate swPD from HS. MSE in the anteroposterior direction at τ4 and τ5, and MSE in the ML direction at τ4 showed to characterize the gait disorders of swPD with the best trade-off between positive and negative posttest probabilities and correlated with the motor disability, pelvic kinematics, and stance phase. Using a time series of 2000 data points, a scale factor of 4 or 5 in the MSE procedure can yield the best trade-off in terms of post-test probabilities when compared to other scale factors for detecting gait variability and complexity in swPD.
Collapse
Affiliation(s)
- Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, 04100 Latina, Italy
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, 00078 Monte Porzio Catone, Italy
| | - Dante Trabassi
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Carmela Conte
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Alberto Ranavolo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Gianluca Coppola
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Chiara Abagnale
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Francesca Barone
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Federico Bighiani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Unit, IRCSS Mondino Foundation, 27100 Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Unit, IRCSS Mondino Foundation, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Unit, IRCSS Mondino Foundation, 27100 Pavia, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, 04100 Latina, Italy
- Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy
| |
Collapse
|
22
|
Russo M, Amboni M, Barone P, Pellecchia MT, Romano M, Ricciardi C, Amato F. Identification of a Gait Pattern for Detecting Mild Cognitive Impairment in Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2023; 23:1985. [PMID: 36850582 PMCID: PMC9963713 DOI: 10.3390/s23041985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to determine a gait pattern, i.e., a subset of spatial and temporal parameters, through a supervised machine learning (ML) approach, which could be used to reliably distinguish Parkinson's Disease (PD) patients with and without mild cognitive impairment (MCI). Thus, 80 PD patients underwent gait analysis and spatial-temporal parameters were acquired in three different conditions (normal gait, motor dual task and cognitive dual task). Statistical analysis was performed to investigate the data and, then, five ML algorithms and the wrapper method were implemented: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Support Vector Machine (SVM) and K-Nearest Neighbour (KNN). First, the algorithms for classifying PD patients with MCI were trained and validated on an internal dataset (sixty patients) and, then, the performance was tested by using an external dataset (twenty patients). Specificity, sensitivity, precision, accuracy and area under the receiver operating characteristic curve were calculated. SVM and RF showed the best performance and detected MCI with an accuracy of over 80.0%. The key features emerging from this study are stance phase, mean velocity, step length and cycle length; moreover, the major number of features selected by the wrapper belonged to the cognitive dual task, thus, supporting the close relationship between gait dysfunction and MCI in PD.
Collapse
Affiliation(s)
- Michela Russo
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Marianna Amboni
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
- IDC Hermitage Capodimonte, 80133 Naples, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Maria Romano
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Carlo Ricciardi
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Francesco Amato
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
23
|
Shusharina N, Yukhnenko D, Botman S, Sapunov V, Savinov V, Kamyshov G, Sayapin D, Voznyuk I. Modern Methods of Diagnostics and Treatment of Neurodegenerative Diseases and Depression. Diagnostics (Basel) 2023; 13:573. [PMID: 36766678 PMCID: PMC9914271 DOI: 10.3390/diagnostics13030573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
This paper discusses the promising areas of research into machine learning applications for the prevention and correction of neurodegenerative and depressive disorders. These two groups of disorders are among the leading causes of decline in the quality of life in the world when estimated using disability-adjusted years. Despite decades of research, the development of new approaches for the assessment (especially pre-clinical) and correction of neurodegenerative diseases and depressive disorders remains among the priority areas of research in neurophysiology, psychology, genetics, and interdisciplinary medicine. Contemporary machine learning technologies and medical data infrastructure create new research opportunities. However, reaching a consensus on the application of new machine learning methods and their integration with the existing standards of care and assessment is still a challenge to overcome before the innovations could be widely introduced to clinics. The research on the development of clinical predictions and classification algorithms contributes towards creating a unified approach to the use of growing clinical data. This unified approach should integrate the requirements of medical professionals, researchers, and governmental regulators. In the current paper, the current state of research into neurodegenerative and depressive disorders is presented.
Collapse
Affiliation(s)
- Natalia Shusharina
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Denis Yukhnenko
- Department of Social Security and Humanitarian Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Stepan Botman
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Viktor Sapunov
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Vladimir Savinov
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Gleb Kamyshov
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Dmitry Sayapin
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Igor Voznyuk
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Department of Neurology, Pavlov First Saint Petersburg State Medical University, 197022 Saint Petersburg, Russia
| |
Collapse
|
24
|
Gourrame K, Griškevičius J, Haritopoulos M, Lukšys D, Jatužis D, Kaladytė-Lokominienė R, Bunevičiūtė R, Mickutė G. Parkinson's disease classification with CWNN: Using wavelet transformations and IMU data fusion for improved accuracy. Technol Health Care 2023; 31:2447-2455. [PMID: 37955069 DOI: 10.3233/thc-235010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by motor impairments and various other symptoms. Early and accurate classification of PD patients is crucial for timely intervention and personalized treatment. Inertial measurement units (IMUs) have emerged as a promising tool for gathering movement data and aiding in PD classification. OBJECTIVE This paper proposes a Convolutional Wavelet Neural Network (CWNN) approach for PD classification using IMU data. CWNNs have emerged as effective models for sensor data classification. The objective is to determine the optimal combination of wavelet transform and IMU data type that yields the highest classification accuracy for PD. METHODS The proposed CWNN architecture integrates convolutional neural networks and wavelet neural networks to capture spatial and temporal dependencies in IMU data. Different wavelet functions, such as Morlet, Mexican Hat, and Gaussian, are employed in the continuous wavelet transform (CWT) step. The CWNN is trained and evaluated using various combinations of accelerometer data, gyroscope data, and fusion data. RESULTS Extensive experiments are conducted using a comprehensive dataset of IMU data collected from individuals with and without PD. The performance of the proposed CWNN is evaluated in terms of classification accuracy, precision, recall, and F1-score. The results demonstrate the impact of different wavelet functions and IMU data types on PD classification performance, revealing that the combination of Morlet wavelet function and IMU data fusion achieves the highest accuracy. CONCLUSION The findings highlight the significance of combining CWT with IMU data fusion for PD classification using CWNNs. The integration of CWT-based feature extraction and the fusion of IMU data from multiple sensors enhance the representation of PD-related patterns, leading to improved classification accuracy. This research provides valuable insights into the potential of CWT and IMU data fusion for advancing PD classification models, enabling more accurate and reliable diagnosis.
Collapse
Affiliation(s)
| | - Julius Griškevičius
- Department of Biomechanical Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Donatas Lukšys
- Department of Biomechanical Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Dalius Jatužis
- Clinics of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Santaros Klinikos Hospital, Vilnius University, Vilnius, Lithuania
| | - Rūta Kaladytė-Lokominienė
- Clinics of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Santaros Klinikos Hospital, Vilnius University, Vilnius, Lithuania
| | - Ramunė Bunevičiūtė
- Clinics of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Santaros Klinikos Hospital, Vilnius University, Vilnius, Lithuania
| | - Gabrielė Mickutė
- Centre of Rehabilitation, Physical and Sports Medicine, Santaros Klinikos Hospital, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
25
|
Jabri S, Carender W, Wiens J, Sienko KH. Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection. J Neuroeng Rehabil 2022; 19:132. [PMID: 36456966 PMCID: PMC9713134 DOI: 10.1186/s12984-022-01099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Vestibular deficits can impair an individual's ability to maintain postural and/or gaze stability. Characterizing gait abnormalities among individuals affected by vestibular deficits could help identify patients at high risk of falling and inform rehabilitation programs. Commonly used gait assessment tools rely on simple measures such as timing and visual observations of path deviations by clinicians. These simple measures may not capture subtle changes in gait kinematics. Therefore, we investigated the use of wearable inertial measurement units (IMUs) and machine learning (ML) approaches to automatically discriminate between gait patterns of individuals with vestibular deficits and age-matched controls. The goal of this study was to examine the effects of IMU placement and gait task selection on the performance of automatic vestibular gait classifiers. METHODS Thirty study participants (15 with vestibular deficits and 15 age-matched controls) participated in a single-session gait study during which they performed seven gait tasks while donning a full-body set of IMUs. Classification performance was reported in terms of area under the receiver operating characteristic curve (AUROC) scores for Random Forest models trained on data from each IMU placement for each gait task. RESULTS Several models were able to classify vestibular gait better than random (AUROC > 0.5), but their performance varied according to IMU placement and gait task selection. Results indicated that a single IMU placed on the left arm when walking with eyes closed resulted in the highest AUROC score for a single IMU (AUROC = 0.88 [0.84, 0.89]). Feature permutation results indicated that participants with vestibular deficits reduced their arm swing compared to age-matched controls while they walked with eyes closed. CONCLUSIONS These findings highlighted differences in upper extremity kinematics during walking with eyes closed that were characteristic of vestibular deficits and showed evidence of the discriminative ability of IMU-based automated screening for vestibular deficits. Further research should explore the mechanisms driving arm swing differences in the vestibular population.
Collapse
Affiliation(s)
- Safa Jabri
- grid.214458.e0000000086837370Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Wendy Carender
- grid.412590.b0000 0000 9081 2336Department of Otolaryngology, Michigan Medicine, Ann Arbor, MI 48109 USA
| | - Jenna Wiens
- grid.214458.e0000000086837370Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - Kathleen H. Sienko
- grid.214458.e0000000086837370Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
26
|
Chen B, Chen C, Hu J, Sayeed Z, Qi J, Darwiche HF, Little BE, Lou S, Darwish M, Foote C, Palacio-Lascano C. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction. SENSORS (BASEL, SWITZERLAND) 2022; 22:7960. [PMID: 36298311 PMCID: PMC9612353 DOI: 10.3390/s22207960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Gait recognition has been applied in the prediction of the probability of elderly flat ground fall, functional evaluation during rehabilitation, and the training of patients with lower extremity motor dysfunction. Gait distinguishing between seemingly similar kinematic patterns associated with different pathological entities is a challenge for the clinician. How to realize automatic identification and judgment of abnormal gait is a significant challenge in clinical practice. The long-term goal of our study is to develop a gait recognition computer vision system using artificial intelligence (AI) and machine learning (ML) computing. This study aims to find an optimal ML algorithm using computer vision techniques and measure variables from lower limbs to classify gait patterns in healthy people. The purpose of this study is to determine the feasibility of computer vision and machine learning (ML) computing in discriminating different gait patterns associated with flat-ground falls. METHODS We used the Kinect® Motion system to capture the spatiotemporal gait data from seven healthy subjects in three walking trials, including normal gait, pelvic-obliquity-gait, and knee-hyperextension-gait walking. Four different classification methods including convolutional neural network (CNN), support vector machine (SVM), K-nearest neighbors (KNN), and long short-term memory (LSTM) neural networks were used to automatically classify three gait patterns. Overall, 750 sets of data were collected, and the dataset was divided into 80% for algorithm training and 20% for evaluation. RESULTS The SVM and KNN had a higher accuracy than CNN and LSTM. The SVM (94.9 ± 3.36%) had the highest accuracy in the classification of gait patterns, followed by KNN (94.0 ± 4.22%). The accuracy of CNN was 87.6 ± 7.50% and that of LSTM 83.6 ± 5.35%. CONCLUSIONS This study revealed that the proposed AI machine learning (ML) techniques can be used to design gait biometric systems and machine vision for gait pattern recognition. Potentially, this method can be used to remotely evaluate elderly patients and help clinicians make decisions regarding disposition, follow-up, and treatment.
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyang Chen
- Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, MI 48201, USA
| | - Jie Hu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zain Sayeed
- Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, MI 48201, USA
| | - Jin Qi
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hussein F. Darwiche
- Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, MI 48201, USA
| | - Bryan E. Little
- Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, MI 48201, USA
| | - Shenna Lou
- South Texas Health System—McAllen Department of Trauma, McAllen, TX 78503, USA
| | - Muhammad Darwish
- South Texas Health System—McAllen Department of Trauma, McAllen, TX 78503, USA
| | - Christopher Foote
- South Texas Health System—McAllen Department of Trauma, McAllen, TX 78503, USA
| | | |
Collapse
|