1
|
Rentz C, Kaiser V, Jung N, Turlach BA, Sahandi Far M, Peterburs J, Boltes M, Schnitzler A, Amunts K, Dukart J, Minnerop M. Sensor-Based Gait and Balance Assessment in Healthy Adults: Analysis of Short-Term Training and Sensor Placement Effects. SENSORS (BASEL, SWITZERLAND) 2024; 24:5598. [PMID: 39275509 PMCID: PMC11397791 DOI: 10.3390/s24175598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
While the analysis of gait and balance can be an important indicator of age- or disease-related changes, it remains unclear if repeated performance of gait and balance tests in healthy adults leads to habituation effects, if short-term gait and balance training can improve gait and balance performance, and whether the placement of wearable sensors influences the measurement accuracy. Healthy adults were assessed before and after performing weekly gait and balance tests over three weeks by using a force plate, motion capturing system and smartphone. The intervention group (n = 25) additionally received a home-based gait and balance training plan. Another sample of healthy adults (n = 32) was assessed once to analyze the impact of sensor placement (lower back vs. lower abdomen) on gait and balance analysis. Both the control and intervention group exhibited improvements in gait/stance. However, the trends over time were similar for both groups, suggesting that targeted training and repeated task performance equally contributed to the improvement of the measured variables. Since no significant differences were found in sensor placement, we suggest that a smartphone used as a wearable sensor could be worn both on the lower abdomen and the lower back in gait and balance analyses.
Collapse
Affiliation(s)
- Clara Rentz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
| | - Vera Kaiser
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Naomi Jung
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
| | - Berwin A Turlach
- Centre for Applied Statistics, The University of Western Australia, Perth, WA 6000, Australia
| | - Mehran Sahandi Far
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jutta Peterburs
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| | - Maik Boltes
- Institute for Advanced Simulation (IAS-7), Research Centre Jülich, 52425 Jülich, Germany
| | - Alfons Schnitzler
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Wang J, Li Y, Yang GY, Jin K. Age-Related Dysfunction in Balance: A Comprehensive Review of Causes, Consequences, and Interventions. Aging Dis 2024:AD.2024.0124-1. [PMID: 38607735 DOI: 10.14336/ad.2024.0124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/24/2024] [Indexed: 04/14/2024] Open
Abstract
This review delves into the multifaceted aspects of age-related balance changes, highlighting their prevalence, underlying causes, and the impact they have on the elderly population. Central to this discussion is the exploration of various physiological changes that occur with aging, such as alterations in the vestibular, visual, proprioceptive systems, and musculoskeletal degeneration. We examine the role of neurological disorders, cognitive decline, and medication side effects in exacerbating balance issues. The review underscores the significance of early detection and effective intervention strategies in mitigating the risks associated with balance problems, such as falls and reduced mobility. It discusses the effectiveness of diverse intervention strategies, including exercise programs, rehabilitation techniques, and technological advancements like virtual reality, wearable devices, and telemedicine. Additionally, the review stresses the importance of a holistic approach in managing balance disorders, encompassing medication review, addressing comorbidities, and environmental modifications. The paper also presents future research directions, emphasizing the need for a deeper understanding of the complex mechanisms underlying balance changes with aging and the potential of emerging technologies and interdisciplinary approaches in enhancing assessment and intervention methods. This comprehensive review aims to provide valuable insights for healthcare providers, researchers, and policymakers in developing targeted strategies to improve the quality of life and ensure the well-being of the aging population.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Regev K, Eren N, Yekutieli Z, Karlinski K, Massri A, Vigiser I, Kolb H, Piura Y, Karni A. Smartphone-based gait assessment for multiple sclerosis. Mult Scler Relat Disord 2024; 82:105394. [PMID: 38141562 DOI: 10.1016/j.msard.2023.105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Multiple Sclerosis causes gait alteration, even in the early stages of the disease. Traditional methods to quantify gait impairment, such as performance-based measures, lab-based motion analyses, and self-report, have limited ecological relevance. The Mon4t® app is a digital tool that uses sensors embedded in standard smartphones to measure various gait parameters. OBJECTIVES To evaluate the use of Mon4t® technology in monitoring MS patients. METHODS 100 MS patients and age-matched healthy controls were evaluated using both a human rater and the Mon4t Clinic™ app. Three motor tasks were performed: 3m Timed up and go test (TUG), 10m TUG, and tandem walk. The digital markers were used to compare MS vs. HC, MS with EDSS=0 vs. HC, and MS with EDSS=0 vs. MS with EDSS>0. Within the MS EDSS>0 group, correlations between digital gait markers and the EDSS score were calculated. RESULTS Significant differences were found between MS patients and HC in multiple gait parameters. When comparing MS patients with minimal disability (EDSS=0) and HC: On the 3m TUG task, MS patients took longer to complete the task (mean difference 0.167seconds, p =0.034), took more steps (mean difference 1.32 steps, p =0.003), and had a weaker ML step-to-step correlation (mean difference 0.1, p = 0.001). The combination of features from the three motor tasks allowed distinguishing a nondisabled MS patient from a HC with high confidence (AUC of 85.65 on the ROC). When comparing MS patients with minimal disability (EDSS=0) to those with higher disability (EDSS>0): On the tandem walk task, patients with EDSS>0 took significantly longer to complete 10 steps than those with EDSS=0 (mean difference 4.63 seconds, p < 0.001), showed greater ML sway (mean difference 0.2, p < 0.001), and had larger angular velocity in the SI axis on average (mean difference 2.31 degrees/sec, p = 0.01). A classification model achieved 81.79 ROC AUC. In the subgroup of patients with EDSS>0, gait features significantly correlated with EDSS score in all three tasks. CONCLUSION The findings demonstrate the potential of digital gait assessment to augment traditional disease monitoring and support clinical decision making. The Mon4t® app provides a convenient and ecologically relevant tool for monitoring MS patients and detecting early changes in gait impairment.
Collapse
Affiliation(s)
- Keren Regev
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | - Ashraf Massri
- Department of Rehabilitation, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ifat Vigiser
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hadar Kolb
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoav Piura
- Department of Neurology, Assuta Ashdod Medical Center, Ashdod, Israel
| | - Arnon Karni
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Grannell A, Hallson H, Gunlaugsson B, Jonsson H. Exercise therapy as a digital therapeutic for chronic disease management: consideration for clinical product development. Front Digit Health 2023; 5:1250979. [PMID: 38173910 PMCID: PMC10761443 DOI: 10.3389/fdgth.2023.1250979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Digital exercise therapies (DET) have the potential to bridge existing care gaps for people living with chronic conditions. Acting as either a standalone, embedded within multi-modal lifestyle therapy, or adjunct to pharmacotherapy or surgery, evidence-based DETs can favorably impact the health of a rapidly growing population. Given the nascent nature of digital therapeutics, the regulatory landscape has yet to mature. As such, in the absence of clear guidelines clinical digital product developers are responsible for ensuring the DET adheres to fundamental principles such as patient risk management and clinical effectiveness. The purpose of this narrative review paper is to discuss key considerations for clinical digital product developers who are striving to build novel digital therapeutic (DTx) solutions and thus contribute towards standardization of product development. We herein draw upon DET as an example, highlighting the need for adherence to existing clinical guidelines, human-centered design and an intervention approach that leverages the Chronic Care Model. Specific topics and recommendations related to the development of innovative and scalable products are discussed which ultimately allow for differentiation from a basic wellness tool and integration to clinical workflows. By embodying a code of ethics, clinical digital product developers can adequately address patients' needs and optimize their own future digital health technology assessments including appropriate evidence of safety and efficacy.
Collapse
Affiliation(s)
- Andrew Grannell
- Sidekick Health, Research & Development Unit, Kópavogur, Iceland
| | | | | | | |
Collapse
|
5
|
Corrêa BDC, Santos EGR, Belgamo A, Pinto GHL, Xavier SS, Silva CC, Dias ÁRN, Paranhos ACM, Cabral ADS, Callegari B, Costa e Silva ADA, Quaresma JAS, Falcão LFM, Souza GS. Smartphone-based evaluation of static balance and mobility in long-lasting COVID-19 patients. Front Neurol 2023; 14:1277408. [PMID: 38148981 PMCID: PMC10750373 DOI: 10.3389/fneur.2023.1277408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Background SARS-CoV-2 infection can lead to a variety of persistent sequelae, collectively known as long COVID-19. Deficits in postural balance have been reported in patients several months after COVID-19 infection. The purpose of this study was to evaluate the static balance and balance of individuals with long COVID-19 using inertial sensors in smartphones. Methods A total of 73 participants were included in this study, of which 41 had long COVID-19 and 32 served as controls. All participants in the long COVID-19 group reported physical complaints for at least 7 months after SARS-CoV-2 infection. Participants were evaluated using a built-in inertial sensor of a smartphone attached to the low back, which recorded inertial signals during a static balance and mobility task (timed up and go test). The parameters of static balance and mobility obtained from both groups were compared. Results The groups were matched for age and BMI. Of the 41 participants in the long COVID-19 group, 22 reported balance impairment and 33 had impaired balance in the Sharpened Romberg test. Static balance assessment revealed that the long COVID-19 group had greater postural instability with both eyes open and closed than the control group. In the TUG test, the long COVID-19 group showed greater acceleration during the sit-to-stand transition compared to the control group. Conclusion The smartphone was feasible to identify losses in the balance motor control and mobility of patients with long-lasting symptomatic COVID-19 even after several months or years. Attention to the balance impairment experienced by these patients could help prevent falls and improve their quality of life, and the use of the smartphone can expand this monitoring for a broader population.
Collapse
Affiliation(s)
| | | | | | | | - Stanley Soares Xavier
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil
| | - Camilla Costa Silva
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil
| | | | - Alna Carolina Mendes Paranhos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Brazil
| | | | - Bianca Callegari
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | | | - Juarez Antônio Simões Quaresma
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil
- School of Medicine, São Paulo University, São Paulo, São Paulo, Brazil
| | | | - Givago Silva Souza
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
6
|
Marano M, Rosati J, Magliozzi A, Casamassa A, Rappa A, Sergi G, Iannizzotto M, Yekutieli Z, Vescovi AL, Di Lazzaro V. Circadian profile, daytime activity, and the Parkinson's phenotype: A motion sensor pilot study with neurobiological underpinnings. Neurobiol Sleep Circadian Rhythms 2023; 14:100094. [PMID: 37025301 PMCID: PMC10070882 DOI: 10.1016/j.nbscr.2023.100094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023] Open
Abstract
Circadian rhythm impairment may play a role in Parkinson's disease (PD) pathophysiology. Recent literature associated circadian rhythm features to the risk of developing Parkinson and to its progression through stages. The association between the chronotype and the phenotype should be verified on a clinical and biological point of view. Herein we investigate the chronotype of a sample of 50 PD patients with the Morningness Eveningness Questionnaire and monitor their daily activity with a motion sensor embedded in a smartphone. Fibroblasts were collected from PD patients (n = 5) and from sex/age matched controls (n = 3) and tested for the circadian expression of clock genes (CLOCK, BMAL1, PER1, CRY1), and for cell morphology, proliferation, and death. Our results show an association between the chronotype and the PD phenotype. The most representative clinical chronotypes were "moderate morning" (56%), the "intermediate" (24%) and, in a minor part, the "definite morning" (16%). They differed for axial motor impairment, presence of motor fluctuations and quality of life (p < 0.05). Patients with visuospatial dysfunction and patients with a higher PIGD score had a blunted motor daily activity (p = 0.006 and p = 0.001, respectively), independently by the influence of age and other motor scores. Fibroblasts obtained by PD patients (n = 5) had an impaired BMAL1 cycle compared to controls (n = 3, p = 0.01). Moreover, a PD flat BMAL1 profile was associated with the lowest cell proliferation and the largest cell morphology. This study contributes to the growing literature on CR abnormalities in the pathophysiology of Parkinson's disease providing a link between the clinical and biological patient chronotype and the disease phenomenology.
Collapse
Affiliation(s)
- Massimo Marano
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
- Corresponding author. Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Roma, Italy.
| | - Jessica Rosati
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Magliozzi
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Alessia Casamassa
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessia Rappa
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Gabriele Sergi
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| | - Miriam Iannizzotto
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| | | | | | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| |
Collapse
|