1
|
Mapari SA, Shrivastava D, Dave A, Bedi GN, Gupta A, Sachani P, Kasat PR, Pradeep U. Revolutionizing Maternal Health: The Role of Artificial Intelligence in Enhancing Care and Accessibility. Cureus 2024; 16:e69555. [PMID: 39421118 PMCID: PMC11484738 DOI: 10.7759/cureus.69555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Maternal health remains a critical global health challenge, with disparities in access to care and quality of services contributing to high maternal mortality and morbidity rates. Artificial intelligence (AI) has emerged as a promising tool for addressing these challenges by enhancing diagnostic accuracy, improving patient monitoring, and expanding access to care. This review explores the transformative role of AI in maternal healthcare, focusing on its applications in the early detection of pregnancy complications, personalized care, and remote monitoring through AI-driven technologies. AI tools such as predictive analytics and machine learning can help identify at-risk pregnancies and guide timely interventions, reducing preventable maternal and neonatal complications. Additionally, AI-enabled telemedicine and virtual assistants are bridging healthcare gaps, particularly in underserved and rural areas, improving accessibility for women who might otherwise face barriers to quality maternal care. Despite the potential benefits, challenges such as data privacy, algorithmic bias, and the need for human oversight must be carefully addressed. The review also discusses future research directions, including expanding AI applications in maternal health globally and the need for ethical frameworks to guide its integration. AI holds the potential to revolutionize maternal healthcare by enhancing both care quality and accessibility, offering a pathway to safer, more equitable maternal outcomes.
Collapse
Affiliation(s)
- Smruti A Mapari
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Deepti Shrivastava
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Apoorva Dave
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Gautam N Bedi
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Aman Gupta
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratiksha Sachani
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Paschyanti R Kasat
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Utkarsh Pradeep
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
2
|
Yaseen I, Rather RA. A Theoretical Exploration of Artificial Intelligence's Impact on Feto-Maternal Health from Conception to Delivery. Int J Womens Health 2024; 16:903-915. [PMID: 38800118 PMCID: PMC11128252 DOI: 10.2147/ijwh.s454127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The implementation of Artificial Intelligence (AI) in healthcare is enhancing diagnostic accuracy in clinical setups. The use of AI in healthcare is steadily increasing with advancing technology, extending beyond disease diagnosis to encompass roles in feto-maternal health. AI harnesses Machine Learning (ML), Natural Language Processing (NLP), Artificial Neural Networks (ANN), and computer vision to analyze data and draw conclusions. Considering maternal health, ML analyzes vast datasets to predict maternal and fetal health outcomes, while NLP interprets medical texts and patient records to assist in diagnosis and treatment decisions. ANN models identify patterns in complex feto-maternal medical data, aiding in risk assessment and intervention planning whereas, computer vision enables the analysis of medical images for early detection of feto-maternal complications. AI facilitates early pregnancy detection, genetic screening, and continuous monitoring of maternal health parameters, providing real-time alerts for deviations, while also playing a crucial role in the early detection of fetal abnormalities through enhanced ultrasound imaging, contributing to informed decision-making. This review investigates into the application of AI, particularly through predictive models, in addressing the monitoring of feto-maternal health. Additionally, it examines potential future directions and challenges associated with these applications.
Collapse
Affiliation(s)
- Ishfaq Yaseen
- Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Riyaz Ahmad Rather
- Department of Biotechnology, College of Natural and Computational Science, Wachemo University, Hossana, Ethiopia
| |
Collapse
|
3
|
Hossain MM, Kashem MA, Islam MM, Sahidullah M, Mumu SH, Uddin J, Aray DG, de la Torre Diez I, Ashraf I, Samad MA. Internet of Things in Pregnancy Care Coordination and Management: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9367. [PMID: 38067740 PMCID: PMC10708762 DOI: 10.3390/s23239367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
The Internet of Things (IoT) has positioned itself globally as a dominant force in the technology sector. IoT, a technology based on interconnected devices, has found applications in various research areas, including healthcare. Embedded devices and wearable technologies powered by IoT have been shown to be effective in patient monitoring and management systems, with a particular focus on pregnant women. This study provides a comprehensive systematic review of the literature on IoT architectures, systems, models and devices used to monitor and manage complications during pregnancy, postpartum and neonatal care. The study identifies emerging research trends and highlights existing research challenges and gaps, offering insights to improve the well-being of pregnant women at a critical moment in their lives. The literature review and discussions presented here serve as valuable resources for stakeholders in this field and pave the way for new and effective paradigms. Additionally, we outline a future research scope discussion for the benefit of researchers and healthcare professionals.
Collapse
Affiliation(s)
- Mohammad Mobarak Hossain
- Department of Computer Science and Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1707, Bangladesh; (M.M.H.); (M.A.K.)
| | - Mohammod Abul Kashem
- Department of Computer Science and Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1707, Bangladesh; (M.M.H.); (M.A.K.)
| | - Md. Monirul Islam
- Department of Software Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Dhaka 1216, Bangladesh;
| | - Md. Sahidullah
- Department of Computer Science and Engineering, Asian University of Bangladesh (AUB), Bangabandhu Road, Tongabari Ashulia, Dhaka 1349, Bangladesh
| | - Sumona Hoque Mumu
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Jia Uddin
- AI and Big Data Department, Endicott College, Woosong University, Daejeon 34606, Republic of Korea;
| | - Daniel Gavilanes Aray
- Higher Polytechnic School, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- Universidade Internacional do Cuanza, Cuito EN250, Bié, Angola
| | - Isabel de la Torre Diez
- Department of Signal Theory, Communications and Telematics Engineering, Unviersity of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Imran Ashraf
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Abdus Samad
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Kumaki D, Motoshima Y, Higuchi F, Sato K, Sekine T, Tokito S. Unobstructive Heartbeat Monitoring of Sleeping Infants and Young Children Using Sheet-Type PVDF Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:9252. [PMID: 38005638 PMCID: PMC10674719 DOI: 10.3390/s23229252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Techniques for noninvasively acquiring the vital information of infants and young children are considered very useful in the fields of healthcare and medical care. An unobstructive measurement method for sleeping infants and young children under the age of 6 years using a sheet-type vital sensor with a polyvinylidene fluoride (PVDF) pressure-sensitive layer is demonstrated. The signal filter conditions to obtain the ballistocardiogram (BCG) and phonocardiogram (PCG) are discussed from the waveform data of infants and young children. The difference in signal processing conditions was caused by the physique of the infants and young children. The peak-to-peak interval (PPI) extracted from the BCG or PCG during sleep showed an extremely high correlation with the R-to-R interval (RRI) extracted from the electrocardiogram (ECG). The vital changes until awakening in infants monitored using a sheet sensor were also investigated. In infants under one year of age that awakened spontaneously, the distinctive vital changes during awakening were observed. Understanding the changes in the heartbeat and respiration signs of infants and young children during sleep is essential for improving the accuracy of abnormality detection by unobstructive sensors.
Collapse
Affiliation(s)
- Daisuke Kumaki
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
| | - Yuko Motoshima
- Faculty of Education, Art and Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata City 990-8560, Yamagata, Japan;
| | - Fujio Higuchi
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
| | - Katsuhiro Sato
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
| | - Tomohito Sekine
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| |
Collapse
|
5
|
Belyaev M, Murugappan M, Velichko A, Korzun D. Entropy-Based Machine Learning Model for Fast Diagnosis and Monitoring of Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2023; 23:8609. [PMID: 37896703 PMCID: PMC10610702 DOI: 10.3390/s23208609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
This study presents the concept of a computationally efficient machine learning (ML) model for diagnosing and monitoring Parkinson's disease (PD) using rest-state EEG signals (rs-EEG) from 20 PD subjects and 20 normal control (NC) subjects at a sampling rate of 128 Hz. Based on the comparative analysis of the effectiveness of entropy calculation methods, fuzzy entropy showed the best results in diagnosing and monitoring PD using rs-EEG, with classification accuracy (ARKF) of ~99.9%. The most important frequency range of rs-EEG for PD-based diagnostics lies in the range of 0-4 Hz, and the most informative signals were mainly received from the right hemisphere of the head. It was also found that ARKF significantly decreased as the length of rs-EEG segments decreased from 1000 to 150 samples. Using a procedure for selecting the most informative features, it was possible to reduce the computational costs of classification by 11 times, while maintaining an ARKF ~99.9%. The proposed method can be used in the healthcare internet of things (H-IoT), where low-performance edge devices can implement ML sensors to enhance human resilience to PD.
Collapse
Affiliation(s)
- Maksim Belyaev
- Institute of Physics and Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
| | - Murugappan Murugappan
- Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Block 4, Kuwait City 13133, Kuwait;
- Department of Electronics and Communication Engineering, Faculty of Engineering, Vels Institute of Sciences, Technology, and Advanced Studies, Chennai 600117, India
- Centre of Excellence for Unmanned Aerial Systems (CoEUAS), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Andrei Velichko
- Institute of Physics and Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
| | - Dmitry Korzun
- Department of Computer Science, Institute of Mathematics and Information Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
| |
Collapse
|
6
|
Velichko A, Boriskov P, Belyaev M, Putrolaynen V. A Bio-Inspired Chaos Sensor Model Based on the Perceptron Neural Network: Machine Learning Concept and Application for Computational Neuro-Science. SENSORS (BASEL, SWITZERLAND) 2023; 23:7137. [PMID: 37631674 PMCID: PMC10458403 DOI: 10.3390/s23167137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The study presents a bio-inspired chaos sensor model based on the perceptron neural network for the estimation of entropy of spike train in neurodynamic systems. After training, the sensor on perceptron, having 50 neurons in the hidden layer and 1 neuron at the output, approximates the fuzzy entropy of a short time series with high accuracy, with a determination coefficient of R2~0.9. The Hindmarsh-Rose spike model was used to generate time series of spike intervals, and datasets for training and testing the perceptron. The selection of the hyperparameters of the perceptron model and the estimation of the sensor accuracy were performed using the K-block cross-validation method. Even for a hidden layer with one neuron, the model approximates the fuzzy entropy with good results and the metric R2~0.5 ÷ 0.8. In a simplified model with one neuron and equal weights in the first layer, the principle of approximation is based on the linear transformation of the average value of the time series into the entropy value. An example of using the chaos sensor on spike train of action potential recordings from the L5 dorsal rootlet of rat is provided. The bio-inspired chaos sensor model based on an ensemble of neurons is able to dynamically track the chaotic behavior of a spike signal and transmit this information to other parts of the neurodynamic model for further processing. The study will be useful for specialists in the field of computational neuroscience, and also to create humanoid and animal robots, and bio-robots with limited resources.
Collapse
Affiliation(s)
- Andrei Velichko
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin str., 185910 Petrozavodsk, Russia; (P.B.); (M.B.); (V.P.)
| | | | | | | |
Collapse
|
7
|
Maugeri A, Barchitta M, Agodi A. How Wearable Sensors Can Support the Research on Foetal and Pregnancy Outcomes: A Scoping Review. J Pers Med 2023; 13:jpm13020218. [PMID: 36836452 PMCID: PMC9961108 DOI: 10.3390/jpm13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The application of innovative technologies, and in particular of wearable devices, can potentially transform the field of antenatal care with the aim of improving maternal and new-born health through a personalized approach. The present study undertakes a scoping review to systematically map the literature about the use wearable sensors in the research of foetal and pregnancy outcomes. Online databases were used to identify papers published between 2000-2022, from which we selected 30 studies: 9 on foetal outcomes and 21 on maternal outcomes. Included studies focused primarily on the use of wearable devices for monitoring foetal vital signs (e.g., foetal heart rate and movements) and maternal activity during pregnancy (e.g., sleep patterns and physical activity levels). There were many studies that focused on development and/or validation of wearable devices, even if often they included a limited number of pregnant women without pregnancy complications. Although their findings support the potential adoption of wearable devices for both antenatal care and research, there is still insufficient evidence to design effective interventions. Therefore, high quality research is needed to determine which and how wearable devices could support antenatal care.
Collapse
|
8
|
Velichko A, Huyut MT, Belyaev M, Izotov Y, Korzun D. Machine Learning Sensors for Diagnosis of COVID-19 Disease Using Routine Blood Values for Internet of Things Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:7886. [PMID: 36298235 PMCID: PMC9610709 DOI: 10.3390/s22207886] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
Healthcare digitalization requires effective applications of human sensors, when various parameters of the human body are instantly monitored in everyday life due to the Internet of Things (IoT). In particular, machine learning (ML) sensors for the prompt diagnosis of COVID-19 are an important option for IoT application in healthcare and ambient assisted living (AAL). Determining a COVID-19 infected status with various diagnostic tests and imaging results is costly and time-consuming. This study provides a fast, reliable and cost-effective alternative tool for the diagnosis of COVID-19 based on the routine blood values (RBVs) measured at admission. The dataset of the study consists of a total of 5296 patients with the same number of negative and positive COVID-19 test results and 51 routine blood values. In this study, 13 popular classifier machine learning models and the LogNNet neural network model were exanimated. The most successful classifier model in terms of time and accuracy in the detection of the disease was the histogram-based gradient boosting (HGB) (accuracy: 100%, time: 6.39 sec). The HGB classifier identified the 11 most important features (LDL, cholesterol, HDL-C, MCHC, triglyceride, amylase, UA, LDH, CK-MB, ALP and MCH) to detect the disease with 100% accuracy. In addition, the importance of single, double and triple combinations of these features in the diagnosis of the disease was discussed. We propose to use these 11 features and their binary combinations as important biomarkers for ML sensors in the diagnosis of the disease, supporting edge computing on Arduino and cloud IoT service.
Collapse
Affiliation(s)
- Andrei Velichko
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| | - Mehmet Tahir Huyut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, 24000 Erzincan, Türkiye
| | - Maksim Belyaev
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| | - Yuriy Izotov
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| | - Dmitry Korzun
- Department of Computer Science, Institute of Mathematics and Information Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| |
Collapse
|