1
|
Amani AM, Tayebi L, Abbasi M, Vaez A, Kamyab H, Chelliapan S, Vafa E. The Need for Smart Materials in an Expanding Smart World: MXene-Based Wearable Electronics and Their Advantageous Applications. ACS OMEGA 2024; 9:3123-3142. [PMID: 38284011 PMCID: PMC10809375 DOI: 10.1021/acsomega.3c06590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
As a result of the transformation of inflexible electronic structures into flexible and stretchy devices, wearable electronics now provide great advantages in a variety of fields, including mobile healthcare sensing and monitoring, human-machine interfaces, portable energy storage and harvesting, and more. Because of their enriched surface functionalities, large surface area, and high electrical conductivity, transition metal nitrides and carbides (also known as MXenes) have recently come to be extensively considered as a group of functioning two-dimensional nanomaterials as well as exceptional fundamental elements for forming flexible electronics devices. This Review discusses the most recent advancements that have been made in the field of MXene-enabled flexible electronics for wearable electronics. The emphasis is placed on extensively established nonstructural features in order to highlight some MXene-enabled electrical devices that were constructed on a nanometric scale. These attributes include devices configured in three dimensions: printed materials, bioinspired structures, and textile and planar substrates. In addition, sample applications in electromagnetic interference (EMI) shielding, energy, healthcare, and humanoid control of machinery illustrate the exceptional development of these nanodevices. The increasing potential of MXene nanoparticles as a new area in next-generation wearable electronic technologies is projected in this Review. The design challenges associated with these electronic devices are also discussed, and possible solutions are presented.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| | - Lobat Tayebi
- School
of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Milad Abbasi
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| | - Ahmad Vaez
- Department
of Tissue Engineering and Applied Cell Sciences, School of Advanced
Medical Sciences and Technologies, Shiraz
University of Medical Sciences, Shiraz 71348, Iran
| | - Hesam Kamyab
- Malaysia-Japan
International Institute of Technology, Universiti
Teknologi Malaysia, Jalan
Sultan Yahya Petra,54100 Kuala Lumpur, Malaysia
- Facultad
de Arquitectura y Urbanismo, Universidad
UTE, Calle Rumipamba
S/N y Bourgeois, Quito 170147, Ecuador
- Department
of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Shreeshivadasan Chelliapan
- Engineering
Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Ehsan Vafa
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| |
Collapse
|
2
|
Cao J, Jiang Y, Li X, Yuan X, Zhang J, He Q, Ye F, Luo G, Guo S, Zhang Y, Wang Q. A Flexible and Stretchable MXene/Waterborne Polyurethane Composite-Coated Fiber Strain Sensor for Wearable Motion and Healthcare Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:271. [PMID: 38203135 PMCID: PMC10781211 DOI: 10.3390/s24010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Fiber-based flexible sensors have promising application potential in human motion and healthcare monitoring, owing to their merits of being lightweight, flexible, and easy to process. Now, high-performance elastic fiber-based strain sensors with high sensitivity, a large working range, and excellent durability are in great demand. Herein, we have easily and quickly prepared a highly sensitive and durable fiber-based strain sensor by dip coating a highly stretchable polyurethane (PU) elastic fiber in an MXene/waterborne polyurethane (WPU) dispersion solution. Benefiting from the electrostatic repulsion force between the negatively charged WPU and MXene sheets in the mixed solution, very homogeneous and stable MXene/WPU dispersion was successfully obtained, and the interconnected conducting networks were correspondingly formed in a coated MXene/WPU shell layer, which makes the as-prepared strain sensor exhibit a gauge factor of over 960, a large sensing range of over 90%, and a detection limit as low as 0.5% strain. As elastic fiber and mixed solution have the same polymer constitute, and tight bonding of the MXene/WPU conductive composite on PU fibers was achieved, enabling the as-prepared strain sensor to endure over 2500 stretching-releasing cycles and thus show good durability. Full-scale human motion detection was also performed by the strain sensor, and a body posture monitoring, analysis, and correction prototype system were developed via embedding the fiber-based strain sensors into sweaters, strongly indicating great application prospects in exercise, sports, and healthcare.
Collapse
Affiliation(s)
- Junming Cao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yuanqing Jiang
- No. 208 Research Institute of China Ordnance Industries, Beijing 102202, China; (Y.J.)
| | - Xiaoming Li
- No. 208 Research Institute of China Ordnance Industries, Beijing 102202, China; (Y.J.)
| | - Xueguang Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Jinnan Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Qi He
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Fei Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Geng Luo
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Shaohua Guo
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yangan Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Qi Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
3
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancement in Biosensor Technologies of 2D MaterialIntegrated with Cellulose-Physical Properties. MICROMACHINES 2023; 15:82. [PMID: 38258201 PMCID: PMC10819598 DOI: 10.3390/mi15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
This review paper provides an in-depth analysis of recent advancements in integrating two-dimensional (2D) materials with cellulose to enhance biosensing technology. The incorporation of 2D materials such as graphene and transition metal dichalcogenides, along with nanocellulose, improves the sensitivity, stability, and flexibility of biosensors. Practical applications of these advanced biosensors are explored in fields like medical diagnostics and environmental monitoring. This innovative approach is driving research opportunities and expanding the possibilities for diverse applications in this rapidly evolving field.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
4
|
Wu H, Chen J, Zhao P, Liu M, Xie F, Ma X. Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration. MEMBRANES 2023; 13:802. [PMID: 37755224 PMCID: PMC10535523 DOI: 10.3390/membranes13090802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing and real-time monitoring technologies have enabled the creation of tissue-like membranes and the provision of an appropriate microenvironment. Using tissue engineering methods incorporating 3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor the recovery of the wound process in different aspects, and some may spontaneously give feedback to the wound sites by releasing biological factors. The combination of the detection of smart sensors and individualized membrane design in the healing process shows enormous potential for wound dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials, and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in various fields, including the modeling of disease, organ-on-a-chip, and drug development.
Collapse
Affiliation(s)
| | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (F.X.); (X.M.)
| | | | | | | |
Collapse
|
5
|
Song Z, Zhou S, Qin Y, Xia X, Sun Y, Han G, Shu T, Hu L, Zhang Q. Flexible and Wearable Biosensors for Monitoring Health Conditions. BIOSENSORS 2023; 13:630. [PMID: 37366995 DOI: 10.3390/bios13060630] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Flexible and wearable biosensors have received tremendous attention over the past decade owing to their great potential applications in the field of health and medicine. Wearable biosensors serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and great conformability. This review introduces the recent research progress in wearable biosensors. First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are summarized. Then, their application manners and information processing are also highlighted in the paper. Massive cutting-edge research examples are introduced such as wearable physiological pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant content, the detection mechanism of these sensors was detailed with examples to help readers understand this area. Finally, the current challenges and future perspectives are proposed to push this research area forward and expand practical applications in the future.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun 130021, China
| | - Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanping Sun
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tong Shu
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
6
|
Pereira RCA, da Silva OS, de Mello Bandeira RA, dos Santos M, de Souza Rocha C, Castillo CDS, Gomes CFS, de Moura Pereira DA, Muradas FM. Evaluation of Smart Sensors for Subway Electric Motor Escalators through AHP-Gaussian Method. SENSORS (BASEL, SWITZERLAND) 2023; 23:4131. [PMID: 37112474 PMCID: PMC10146523 DOI: 10.3390/s23084131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
This paper proposes the use of the AHP-Gaussian method to support the selection of a smart sensor installation for an electric motor used in an escalator in a subway station. The AHP-Gaussian methodology utilizes the Analytic Hierarchy Process (AHP) framework and is highlighted for its ability to save the decision maker's cognitive effort in assigning weights to criteria. Seven criteria were defined for the sensor selection: temperature range, vibration range, weight, communication distance, maximum electric power, data traffic speed, and acquisition cost. Four smart sensors were considered as alternatives. The results of the analysis showed that the most appropriate sensor was the ABB Ability smart sensor, which scored the highest in the AHP-Gaussian analysis. In addition, this sensor could detect any abnormalities in the equipment's operation, enabling timely maintenance and preventing potential failures. The proposed AHP-Gaussian method proved to be an effective approach for selecting a smart sensor for an electric motor used in an escalator in a subway station. The selected sensor was reliable, accurate, and cost-effective, contributing to the safe and efficient operation of the equipment.
Collapse
Affiliation(s)
| | | | | | - Marcos dos Santos
- Department of Production Engineering, Faculty of Engineering, Praia Vermelha Campus, Federal Fluminense University, Niteroi 22040-036, Brazil
| | - Claudio de Souza Rocha
- Department of Production Engineering, Faculty of Engineering, Praia Vermelha Campus, Federal Fluminense University, Niteroi 22040-036, Brazil
| | - Cristian dos Santos Castillo
- Department of Production Engineering, Faculty of Engineering, Praia Vermelha Campus, Federal Fluminense University, Niteroi 22040-036, Brazil
| | - Carlos Francisco Simões Gomes
- Department of Production Engineering, Faculty of Engineering, Praia Vermelha Campus, Federal Fluminense University, Niteroi 22040-036, Brazil
| | | | - Fernando Martins Muradas
- Operational Research Department, Naval Systems Analysis Center (CASNAV), Rio de Janeiro 20091-000, Brazil
| |
Collapse
|