1
|
Reiker T, Liu Z, Winter C, Cappellari MV, Abradelo DG, Strassert CA, Zhang D, Zacharias H. Ultrafast electron dynamics in excited states of conjugated thiophene-fluorene organic polymer (pF8T2) thin films. Phys Chem Chem Phys 2024; 26:4736-4751. [PMID: 38251969 DOI: 10.1039/d3cp00502j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The electronic states of poly(9,9-dioctylfluorenyl-alt-bithiophene) pF8T2 on H/Si(100) substrates, prototypical for organic photovoltaics, were investigated by ultrafast photoelectron spectroscopy and by time-resolved fluorescence studies. Occupied and unoccupied electronic states were analysed by ultraviolet photoelectron spectroscopy (UPS), static and dynamic femtosecond two-photon photoemission (2PPE), and time-correlated single photon counting (TCSPC). Time-resolved measurements allow assessment of population lifetimes of intermediate states. The combination of time-resolved photoelectron spectroscopy and fluorescence excitation allows following the electronic dynamics in excited states from the femtosecond to the nanosecond time scale. For this prototypical material the electron kinetic energy resolved lifetimes range from about a few tens of femtoseconds up to hundreds of picoseconds. After annealing these types of organic thin films the efficiency of organic solar cells usually increases. We show that annealing does not influence the initial ultrafast charge generation processes, but the long-lived states. However, the nanosecond scale fluorescence lifetimes measured by TCSPC are prolonged after annealing, which therefore is identified as the cause of a greater exciton diffusion range and thus is beneficial for charge carrier extraction.
Collapse
Affiliation(s)
- T Reiker
- Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany.
- Physics Institute, University of Münster, 48149 Münster, Germany
| | - Z Liu
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - C Winter
- Physics Institute, University of Münster, 48149 Münster, Germany
| | - M V Cappellari
- Center for Nanotechnology and Institute for Inorganic and Analytical Chemistry, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - D Gonzalez Abradelo
- Center for Nanotechnology and Institute for Inorganic and Analytical Chemistry, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - C A Strassert
- Center for Nanotechnology and Institute for Inorganic and Analytical Chemistry, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - D Zhang
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - H Zacharias
- Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany.
- Physics Institute, University of Münster, 48149 Münster, Germany
| |
Collapse
|
2
|
Giovanetti M, Branda F, Cella E, Scarpa F, Bazzani L, Ciccozzi A, Slavov SN, Benvenuto D, Sanna D, Casu M, Santos LA, Lai A, Zehender G, Caccuri F, Ianni A, Caruso A, Maroutti A, Pascarella S, Borsetti A, Ciccozzi M. Epidemic history and evolution of an emerging threat of international concern, the severe acute respiratory syndrome coronavirus 2. J Med Virol 2023; 95:e29012. [PMID: 37548148 DOI: 10.1002/jmv.29012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
This comprehensive review focuses on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact as the cause of the COVID-19 pandemic. Its objective is to provide a cohesive overview of the epidemic history and evolutionary aspects of the virus, with a particular emphasis on its emergence, global spread, and implications for public health. The review delves into the timelines and key milestones of SARS-CoV-2's epidemiological progression, shedding light on the challenges encountered during early containment efforts and subsequent waves of transmission. Understanding the evolutionary dynamics of the virus is crucial in monitoring its potential for adaptation and future outbreaks. Genetic characterization of SARS-CoV-2 is discussed, with a focus on the emergence of new variants and their implications for transmissibility, severity, and immune evasion. The review highlights the important role of genomic surveillance in tracking viral mutations linked to establishing public health interventions. By analyzing the origins, global spread, and genetic evolution of SARS-CoV-2, valuable insights can be gained for the development of effective control measures, improvement of pandemic preparedness, and addressing future emerging infectious diseases of international concern.
Collapse
Affiliation(s)
- Marta Giovanetti
- Instituto Rene Rachou Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Italy, Rome, Italy
| | - Francesco Branda
- Department of Computer Science, Modeling, Electronics and Systems Engineering (DIMES), University of Calabria, Rende, Italy
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Liliana Bazzani
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Italy, Rome, Italy
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Svetoslav Nanev Slavov
- Butantan Institute, São Paulo, Brazil
- Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Domenico Benvenuto
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Luciane Amorim Santos
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Praça Ramos de Queirós, s/n, Largo do Terreiro de Jesus, Salvador, Bahia, Brazil
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy
| | - Giangluglielmo Zehender
- Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy
| | - Francesca Caccuri
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Ianni
- M.G. Vannini Hospital IFSC Rome, Research Unit in Hygiene UCBM Rome, Rome, Italy
| | - Arnaldo Caruso
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Stefano Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
3
|
Alhamid G, Tombuloglu H, Rabaan AA, Al-Suhaimi E. SARS-CoV-2 detection methods: A comprehensive review. Saudi J Biol Sci 2022; 29:103465. [PMID: 36186678 PMCID: PMC9512523 DOI: 10.1016/j.sjbs.2022.103465] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
The ongoing novel COVID-19 has remained the center of attention, since its declaration as a pandemic in March 2020, due to its rapid and uncontrollable worldwide spread. Diagnostic tests are the first line of defense against the transmission of this infectious disease among individuals, with reverse-transcription quantitative polymerase chain reaction (RT-qPCR) being the approved gold standard for showing high sensitivity and specificity in detecting SARS-CoV-2. However, alternative tests are being invested due to the global demand for facilities, reagents, and healthcare workers needed for rapid population-based testing. Also, the rapid evolution of the viral genome and the emergence of new variants necessitates updating the existing methods. Scientists are aiming to improve tests to be affordable, simple, fast, and at the same time accurate, and efficient, as well as friendly user testing. The current diagnostic methods are either molecular-based that detect nucleic acids abundance, like RT-qPCR and reverse-transcription loop-mediated isothermal amplification (RT-LAMP); or immunologically based that detect the presence of antigens or antibodies in patients’ specimens, like enzyme-linked immunosorbent assay (ELISA), lateral flow assay (LFA), chemiluminescent immunoassay (CLIA), and neutralization assay. In addition to these strategies, sensor-based or CRISPR applications are promising tools for the rapid detection of SARS-CoV-2. This review summarizes the most recent updates on the SARS-CoV-2 detection methods with their limitations. It will guide researchers, epidemiologists, and clinicians in identifying a more rapid, reliable, and sensitive method of diagnosing SARS-CoV-2 including the most recent variant of concern Omicron.
Collapse
Affiliation(s)
- Galyah Alhamid
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.,Biotechnology Master Program, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Department of Biology, College of Science and Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|