1
|
Djouonkep LDW, Tamo CT, Simo BE, Issah N, Tchouagtie MN, Selabi NBS, Doench I, Kamdem Tamo A, Xie B, Osorio-Madrazo A. Synthesis by Melt-Polymerization of a Novel Series of Bio-Based and Biodegradable Thiophene-Containing Copolyesters with Promising Gas Barrier and High Thermomechanical Properties. Molecules 2023; 28:1825. [PMID: 36838821 PMCID: PMC9965281 DOI: 10.3390/molecules28041825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Volatile global oil prices, owing to the scarcity of fossil resources, have impacted the cost of producing petrochemicals. Therefore, there is a need to seek novel, renewable chemicals from biomass feedstocks that have comparable properties to petrochemicals. In this study, synthesis, thermal and mechanical properties, and degradability studies of a novel series of sustainable thiophene-based copolyesters like poly(hexylene 2,5-thiophenedicarboxylate-co-bis(2-hydroxyethoxybenzene) (PTBxHy) were conducted via a controlled melt polymerization method. Fourier-transform infrared (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy techniques elucidated the degree of randomness and structural properties of copolyesters. Meanwhile, gel permeation chromatography (GPC) analysis showed a high average molecular weight in the range of 67.4-78.7 × 103 g/mol. The glass transition temperature (Tg) was between 69.4 and 105.5 °C, and the melting point between 173.7 and 194.2 °C. The synthesized polymers outperformed poly(ethylene 2,5-thiophenedicarboxylate) (PETF) and behaved similarly to polyethylene terephthalate. The copolyesters exhibited a high tensile strength of 46.4-70.5 MPa and a toughness of more than 600%, superior to their corresponding homopolyesters. The copolyesters, which ranged from 1,4-bis(2-hydroxyethyl)benzene thiophenedicarboxylate (TBB)-enriched to hexylene thiophenedicarboxylate (THH)-enriched, offered significant control over crystallinity, thermal and mechanical properties. Enzymatic hydrolysis of synthetized polymers using porcine pancreatic lipase (PP-L) over a short period resulted in significant weight losses of 9.6, 11.4, 30.2, and 35 wt%, as observed by scanning electron microscopy (SEM), with perforations visible on all surfaces of the films. Thus, thiophene-based polyesters with cyclic aromatic structures similar to terephthalic acid (TPA) show great promise as PET mimics. At the same time, PP-L appears to be a promising biocatalyst for the degradation of bioplastic waste and its recycling via re-synthesis processes.
Collapse
Affiliation(s)
- Lesly Dasilva Wandji Djouonkep
- Department of Petroleum Engineering, Applied Chemistry in Oil and Gas Fields, Yangtze University, Wuhan 430100, China
- Lost Circulation Control Laboratory, National Engineering Laboratory for Petroleum Drilling Engineering, Yangtze University, Wuhan 430100, China
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Christian Tatchum Tamo
- National Advanced School of Engineering, University of Maroua, Maroua P.O. Box 46, Cameroon
| | - Belle Elda Simo
- Department of Earth Sciences, University of Dschang, Dschang P.O. Box 96, Cameroon
| | - Nasiru Issah
- Department of Biochemistry, Kwame Nkrumah University, Kabwe P.O. Box 80404, Ghana
| | | | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ingo Doench
- Laboratory for Bioinspired Materials, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Binqiang Xie
- Department of Petroleum Engineering, Applied Chemistry in Oil and Gas Fields, Yangtze University, Wuhan 430100, China
- Lost Circulation Control Laboratory, National Engineering Laboratory for Petroleum Drilling Engineering, Yangtze University, Wuhan 430100, China
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Pecheu CN, Jiokeng SLZ, Tamo AK, Doungmo G, Doench I, Osorio-Madrazo A, Tonle IK, Ngameni E. Fabrication of an Organofunctionalized Talc-like Magnesium Phyllosilicate for the Electrochemical Sensing of Lead Ions in Water Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2928. [PMID: 36079966 PMCID: PMC9457713 DOI: 10.3390/nano12172928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
A talc-like magnesium phyllosilicate functionalized with amine groups (TalcNH2), useful as sensor material in voltammetry stripping analysis, was synthesized by a sol-gel-based processing method. The characterizations of the resulting synthetic organoclay by scanning electron microscopy (SEM), X-ray diffraction, N2 sorption isotherms (BET method), Fourier transform infrared spectroscopy (FTIR), CHN elemental analysis and UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS) demonstrated the effectiveness of the process used for grafting of amine functionality in the interlamellar clay. The results indicate the presence of organic moieties covalently bonded to the inorganic lattice of talc-like magnesium phyllosilicate silicon sheet, with interlayer distances of 1568.4 pm. In an effort to use a talc-like material as an electrode material without the addition of a dispersing agent and/or molecular glue, the TalcNH2 material was successfully dispersed in distilled water in contrast to natural talc. Then, it was used to modify a glassy carbon electrode (GCE) by drop coating. The characterization of the resulting modified electrode by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed its charge selectivity ability. In addition, EIS results showed low charge transfer resistance (0.32 Ω) during the electro-oxidation of [Fe(CN)6]3-. Kinetics studies were also performed by EIS, which revealed that the standard heterogeneous electron transfer rate constant was (0.019 ± 0.001) cm.s-1, indicating a fast direct electron transfer rate of [Fe(CN)6]3- to the electrode. Using anodic adsorptive stripping differential pulse voltammetry (DPV), fast and highly sensitive determination of Pb(II) ions was achieved. The peak current of Pb2+ ions on TalcNH2/GCE was about three-fold more important than that obtained on bare GCE. The calculated detection and quantification limits were respectively 7.45 × 10-8 M (S/N = 3) and 24.84 × 10-8 M (S/N 10), for the determination of Pb2+ under optimized conditions. The method was successfully used to tap water with satisfactory results. The results highlight the efficient chelation of Pb2+ ions by the grafted NH2 groups and the potential of talc-like amino-functionalized magnesium phyllosilicate for application in electrochemical sensors.
Collapse
Affiliation(s)
- Chancellin Nkepdep Pecheu
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Sherman Lesly Zambou Jiokeng
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564 CNRS—Université de Lorraine, 405, rue de Vandœuvre, 54600 Villers-lès-Nancy, France
| | - Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Giscard Doungmo
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Ingo Doench
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Ignas Kenfack Tonle
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Emmanuel Ngameni
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Yaounde 1, Yaoundé P.O. Box 812, Cameroon
| |
Collapse
|