1
|
Anwar A, Kaur T, Chaugule S, Yang YS, Mago A, Shim JH, John AA. Sensors in Bone: Technologies, Applications, and Future Directions. SENSORS (BASEL, SWITZERLAND) 2024; 24:6172. [PMID: 39409211 PMCID: PMC11478373 DOI: 10.3390/s24196172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Osteoporosis, a prevalent ailment worldwide, compromises bone strength and resilience, particularly afflicting the elderly population. This condition significantly heightens susceptibility to fractures even from trivial incidents, such as minor falls or impacts. A major challenge in diagnosing osteoporosis is the absence of discernible symptoms, allowing osteoporosis to remain undetected until the occurrence of a fracture event. Early symptom detection and swift diagnosis are critical for preventing severe issues related to bone diseases. Assessing bone turnover markers aids in identifying, diagnosing, and monitoring these conditions, guiding treatment decisions. However, conventional techniques for measuring bone mineral density are costly, time-consuming, and require specialized expertise. The integration of sensor technologies into medical practices has transformed how we monitor, diagnose, and treat various health conditions, including bone health and orthopedics. This review aims to provide a comprehensive overview of the current state of sensor technologies used in bone, covering their integration with bone tissue, various applications, recent advancements, challenges, and future directions.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Biotechnology and Zoology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Taruneet Kaur
- Faculty of Engineering and Design, Carleton University, 125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Sachin Chaugule
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Aryan Mago
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Aijaz Ahmad John
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
2
|
Siverino C, Metsemakers WJ, Sutter R, Della Bella E, Morgenstern M, Barcik J, Ernst M, D'Este M, Joeris A, Chittò M, Schwarzenberg P, Stoddart M, Vanvelk N, Richards G, Wehrle E, Weisemann F, Zeiter S, Zalavras C, Varga P, Moriarty TF. Clinical management and innovation in fracture non-union. Expert Opin Biol Ther 2024; 24:973-991. [PMID: 39126182 DOI: 10.1080/14712598.2024.2391491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION With the introduction and continuous improvement in operative fracture fixation, even the most severe bone fractures can be treated with a high rate of successful healing. However, healing complications can occur and when healing fails over prolonged time, the outcome is termed a fracture non-union. Non-union is generally believed to develop due to inadequate fixation, underlying host-related factors, or infection. Despite the advancements in fracture fixation and infection management, there is still a clear need for earlier diagnosis, improved prediction of healing outcomes and innovation in the treatment of non-union. AREAS COVERED This review provides a detailed description of non-union from a clinical perspective, including the state of the art in diagnosis, treatment, and currently available biomaterials and orthobiologics.Subsequently, recent translational development from the biological, mechanical, and infection research fields are presented, including the latest in smart implants, osteoinductive materials, and in silico modeling. EXPERT OPINION The first challenge for future innovations is to refine and to identify new clinical factors for the proper definition, diagnosis, and treatment of non-union. However, integration of in vitro, in vivo, and in silico research will enable a comprehensive understanding of non-union causes and correlations, leading to the development of more effective treatments.
Collapse
Affiliation(s)
- C Siverino
- AO Research Institute Davos, Davos Platz, Switzerland
| | - W-J Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven - University of Leuven, Leuven, Belgium
| | - R Sutter
- Radiology Department, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - E Della Bella
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - J Barcik
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Ernst
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M D'Este
- AO Research Institute Davos, Davos Platz, Switzerland
| | - A Joeris
- AO Innovation Translation Center, Davos Platz, Switzerland
| | - M Chittò
- AO Research Institute Davos, Davos Platz, Switzerland
| | | | - M Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
| | - N Vanvelk
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - G Richards
- AO Research Institute Davos, Davos Platz, Switzerland
| | - E Wehrle
- AO Research Institute Davos, Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - F Weisemann
- Department of Trauma Surgery, BG Unfallklinik Murnau, Murnau am Staffelsee, Germany
| | - S Zeiter
- AO Research Institute Davos, Davos Platz, Switzerland
| | - C Zalavras
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Varga
- AO Research Institute Davos, Davos Platz, Switzerland
| | - T F Moriarty
- AO Research Institute Davos, Davos Platz, Switzerland
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Li J, Zhang F, Lyu H, Yin P, Shi L, Li Z, Zhang L, Di CA, Tang P. Evolution of Musculoskeletal Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303311. [PMID: 38561020 DOI: 10.1002/adma.202303311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/10/2024] [Indexed: 04/04/2024]
Abstract
The musculoskeletal system, constituting the largest human physiological system, plays a critical role in providing structural support to the body, facilitating intricate movements, and safeguarding internal organs. By virtue of advancements in revolutionized materials and devices, particularly in the realms of motion capture, health monitoring, and postoperative rehabilitation, "musculoskeletal electronics" has actually emerged as an infancy area, but has not yet been explicitly proposed. In this review, the concept of musculoskeletal electronics is elucidated, and the evolution history, representative progress, and key strategies of the involved materials and state-of-the-art devices are summarized. Therefore, the fundamentals of musculoskeletal electronics and key functionality categories are introduced. Subsequently, recent advances in musculoskeletal electronics are presented from the perspectives of "in vitro" to "in vivo" signal detection, interactive modulation, and therapeutic interventions for healing and recovery. Additionally, nine strategy avenues for the development of advanced musculoskeletal electronic materials and devices are proposed. Finally, concise summaries and perspectives are proposed to highlight the directions that deserve focused attention in this booming field.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houchen Lyu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Lei Shi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Zhiyi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| |
Collapse
|
4
|
Frost MW, Tirta M, Rahbek O, Rytoft LA, Ding M, Shen M, Duch K, Kold S. Electrical impedance detects early stages of bone healing: An in vivo explanatory study of tibial fractures in rabbits. J Exp Orthop 2024; 11:e12048. [PMID: 38863940 PMCID: PMC11165676 DOI: 10.1002/jeo2.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose Healing after bone fracture is assessed by clinical examination and frequent radiographs, which expose patients to radiation and lack standardisation. This study aimed to explore electrical impedance patterns during bone healing using electrical impedance spectroscopy in 18 rabbits subjected to tibial fracture stabilised with an external fixator. Methods Impedance was measured daily across the fracture site at a frequency range of 5 Hz to 1 MHz. Biweekly radiographs were analysed using modified anterior-posterior (AP) radiographic union score of the tibia (RUST). The animals were divided into three groups with different follow-up times: 1, 3 and 6 weeks for micro-computer tomography and mechanical testing. Results A decreasing trend in impedance was observed over time for all rabbits at lower frequencies. Impedance closest to 5 Hz showed a statistically significant decrease over time, with greatest decrease occurring during the first 7 postoperative days. At 5 Hz, a statistically significant correlation was found between impedance and the modified AP RUST score and between impedance and bone volume fraction. Conclusions This study showed that the electrical impedance can be measured in vivo at a distance from the fracture site with a consistent change in impedance over time and revealed significant correlation between increasing radiographic union score and decreasing impedance. Level of Evidence Not applicable.
Collapse
Affiliation(s)
| | - Maria Tirta
- Department of OrthopaedicsAalborg University HospitalAalborgDenmark
| | - Ole Rahbek
- Department of OrthopaedicsAalborg University HospitalAalborgDenmark
| | | | - Ming Ding
- Department of Orthopaedic Surgery & TraumatologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Ming Shen
- Department of Electronic SystemsAalborg UniversityAalborgDenmark
| | - Kirsten Duch
- Unit of Clinical BiostatisticsAalborg University HospitalAalborgDenmark
| | - Søren Kold
- Department of OrthopaedicsAalborg University HospitalAalborgDenmark
| |
Collapse
|
5
|
Wang J, Chu J, Song J, Li Z. The application of impantable sensors in the musculoskeletal system: a review. Front Bioeng Biotechnol 2024; 12:1270237. [PMID: 38328442 PMCID: PMC10847584 DOI: 10.3389/fbioe.2024.1270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
As the population ages and the incidence of traumatic events rises, there is a growing trend toward the implantation of devices to replace damaged or degenerated tissues in the body. In orthopedic applications, some implants are equipped with sensors to measure internal data and monitor the status of the implant. In recent years, several multi-functional implants have been developed that the clinician can externally control using a smart device. Experts anticipate that these versatile implants could pave the way for the next-generation of technological advancements. This paper provides an introduction to implantable sensors and is structured into three parts. The first section categorizes existing implantable sensors based on their working principles and provides detailed illustrations with examples. The second section introduces the most common materials used in implantable sensors, divided into rigid and flexible materials according to their properties. The third section is the focal point of this article, with implantable orthopedic sensors being classified as joint, spine, or fracture, based on different practical scenarios. The aim of this review is to introduce various implantable orthopedic sensors, compare their different characteristics, and outline the future direction of their development and application.
Collapse
Affiliation(s)
- Jinzuo Wang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| | - Jian Chu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jinhui Song
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
6
|
Astashev ME, Konchekov EM, Kolik LV, Gudkov SV. Electric Impedance Spectroscopy in Trees Condition Analysis: Theory and Experiment. SENSORS (BASEL, SWITZERLAND) 2022; 22:8310. [PMID: 36366006 PMCID: PMC9658313 DOI: 10.3390/s22218310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Electric impedance spectroscopy is an alternative technology to existing methods that shows promising results in the agro-food industry and plant physiology research. For example, this technology makes it possible to monitor the condition of plants, even in the early stages of development, and to control the quality of finished products. However, the use of electric impedance spectroscopy is often associated with the need to organize special laboratory conditions for measurements. Our aim is to extract information about the state of health of the internal tissues of a plant's branches from impedance measurements. Therefore, we propose a new technique using the device and model developed by us that makes it possible to monitor the condition of tree branch tissues in situ. An apple tree was chosen as the object under study, and the dependence of the impedance of the apple tree branch on the signal frequency and branch length was analyzed. The change in the impedance of an apple tree branch during drying was also analyzed. It was shown that, when a branch dries out, the conductivity of the xylem mainly decreases. The developed technique was also applied to determine the development of the vascular system of an apple tree after grafting. It was shown that the processing of the scion and rootstock sections with the help of cold atmospheric plasma and a plasma-treated solution contributes to a better formation of graft unions.
Collapse
|