1
|
Shkhair AI, Madanan AS, Varghese S, Abraham MK, Indongo G, Rajeevan G, Arathy BK, Abbas SM, George S. Red emitting fluorescence sensor based on Eu-tungstate complex for the detection of bilirubin in biological fluid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125572. [PMID: 39700550 DOI: 10.1016/j.saa.2024.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Bilirubin is an important biomarker indicative of human health metabolism, especially in jaundice disease. In this work, we develop an Eu (Europium)-tungstate complex-based turn-off luminescence detection method for bilirubin in human (urineand serum)samples. The Eu-tungstate complex was synthesized by a straightforward one-pot procedure at ambient temperature, utilizing Europium chloride and Sodium tungstate as the precursors. The Eu-tungstate complex exhibited a very strong red emission and demonstrated excellent stability. The fluorescence of the Eu-tungstate complex in aqueous mediacan be turned off regularly by the gradual addition of bilirubin with a limit of detection (LoD) of 0.27 μM and alimit of quantitative (LoQ) of 0.91 μM.Moreover, this sensing technology can be utilized to sense bilirubin in actual samples.
Collapse
Affiliation(s)
- Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India; College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - B K Arathy
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Sara Muneer Abbas
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India; College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India; International Inter-University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
2
|
Tang S, Cai J, Zhou K, Mei Z, Huang D, Liu L, Yang L, Yin D, Hu L. Cu-MOFs@AuPtNPs nanozyme-based immunosorbent assay for colorimetric detection of alpha-fetoprotein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6443-6450. [PMID: 39225244 DOI: 10.1039/d4ay01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Accurate detection of tumor biomarkers in blood is crucial for diagnosing and treating tumor disease. In this study, a metal enzyme-linked immunosorbent assay (MeLISA) was fabricated for the ultrasensitive and naked-eye detection of tumor biomarker alpha-fetoprotein (AFP) in clinical serum samples. Herein, novel copper metal-organic frameworks and gold platinum nanoparticle composites (Cu-MOFs@AuPtNPs) were synthesized for the first time by an in situ method, which showed an enormous specific surface area and excellent peroxidase (POx) mimicking properties. Cu-MOFs@AuPtNPs linked with antibodies targeting AFP served as a signal nanoprobe to amplify the detection signal. Additionally, the specificity of MeLISA was significantly enhanced through a conventional antigen-antibody reaction and efficient blocking of non-specific sites with BSA. Under optimal conditions, the sandwich-type MeLISA exhibited a wide range from 0.001 to 1000 ng mL-1 (R2 = 0.997) and a low detection limit of 0.86 pg mL-1 (S/N = 3) with acceptable stability, selectivity, and reproducibility. It is noteworthy that the suggested MeLISA performed exceptionally well in detecting clinical serum samples, which were visible to the naked eye and did not require complex platforms. To sum up, the innovative MeLISA based on Cu-MOFs@AuPtNPs provides an alternative method for early cancer diagnosis, particularly in economically backward areas where simple diagnostic apparatus is extremely desirable.
Collapse
Affiliation(s)
- Sitian Tang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Juan Cai
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Kai Zhou
- Department of Spine Surgery, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China
| | - Zhu Mei
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Dongmei Huang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Ling Liu
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Lunyu Yang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Dan Yin
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Liyi Hu
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| |
Collapse
|
3
|
O AA, Akhila BA, George S. Fluorescent Nitrogen-doped Carbon Dots-based Turn-off Sensor for Bilirubin. J Fluoresc 2024:10.1007/s10895-024-03771-0. [PMID: 38865062 DOI: 10.1007/s10895-024-03771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Bilirubin (BR), a heme protein produced from breakdown of haemoglobin is present in aged red blood cells; whose abnormal concentration is associated with diseases like hyperbilirubinemia, coronary disease, iron deficiency, and so on. Herein, we have synthesized a selective, sensitive, and low-cost sensing platform using fluorescent nitrogen doped carbon dots (NCDs), prepared from precursors; citric acid and urea via a simple microwave-assisted method. The emission at 444 nm on excitation with 360 nm was well quenched in presence of BR suggesting a direct turn-off detection for BR. Characterization of developed probe was done by UV-Visible absorption studies, photoluminescence studies, SEM, TEM, ATR-FTIR, XPS, and DLS analysis. BR was detected with a Limit of Detection (LoD) and Limit of Quantification (LoQ) of 0.32 µM and 1.08 µM respectively. NCDs exhibited excellent selectivity and sensitivity towards BR in the presence of co-existing biomolecules and ions. Practical feasibility was checked by paper-strip-based sensing of BR and spiked real human samples were used for conducting real sample analysis.
Collapse
Affiliation(s)
- Aswathy A O
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - B A Akhila
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Sony George
- Department of Chemistry, International Inter University Centre for Sensing and Imaging (IIUCSI), University of Kerala, Coordinator, Kariavattom, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
4
|
Wahyuni WT, Putra BR, Rahman HA, Ivandini TA, Irkham, Khalil M, Rahmawati I. Effect of Aspect Ratio of a Gold-Nanorod-Modified Screen-Printed Carbon Electrode for Carbaryl Detection in Three Different Samples of Vegetables. ACS OMEGA 2024; 9:1497-1515. [PMID: 38239286 PMCID: PMC10796111 DOI: 10.1021/acsomega.3c07831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024]
Abstract
In this study, three different sizes of gold nanorods (AuNRs) were synthesized using the seed-growth method by adding various volumes of AgNO3 as 400, 600, and 800 μL into the growth solution of gold nanoparticles. Three different sizes of AuNRs were then characterized using UV-vis spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) patterns, and atomic force microscopy (AFM) to investigate the surface morphology, topography, and aspect ratios of each synthesized AuNR. The aspect ratios from the histogram of size distributions of three AuNRs as 2.21, 2.53, and 2.85 can be calculated corresponding to the addition of AgNO3 volumes of 400, 600, and 800 μL. Moreover, each AuNR in three different aspect ratios was drop-cast onto the surface of a commercial screen-printed carbon electrode (SPCE) to obtain three different SPCE-modified AuNRs (SPCE-A400, SPCE-A600, and SPCE-A800, respectively). All SPCE-modified AuNRs were then evaluated for their electrochemical behavior using cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques and the highest electrochemical performance was shown as the order of magnitude of SPCE-A400 > SPCE-A600/SPCE-A800. The reason for the highest electrocatalytic activity of SPCE-A400 might be due to the smallest particle size and uniform distribution of AuNRs ∼ 2.2, which enhanced the charge transfer, thus providing the highest electroactive surface area (0.6685 cm2) compared to other electrodes. These results also confirm that the sensing mechanism for all SPCE-modified AuNRs is controlled by diffusion phenomena. In addition, the optimum pH was obtained as 4 for carbaryl detection for all SPCE-modified AuNRs with the highest current shown by SPCE-A400. Furthermore, SPCE-A400 has the highest fundamental parameters (surface coverage, catalytic rate constant, electron transfer rate constant, and adsorption capacity) for carbaryl detection, which were investigated using cyclic voltammetry and chronoamperometric techniques. The electroanalytical performances of all SPCE-modified AuNRs for carbaryl detection were also investigated with SPCE-A400 displaying the best performance among other electrodes in terms of its linearity (0.2-100 μM), limit of detection (LOD) ∼ 0.07 μM, and limit of quantification (LOQ) ∼ 0.2 μM. All SPCE-modified AuNRs were also subsequently evaluated for their stability, reproducibility, and selectivity in the presence of interfering species such as NaNO2, NH4NO3, Zn(CH3CO2)2, FeSO4, diazinon, and glucose and show reliable results as depicted from %RSD values less than 3%. At last, all SPCE-modified AuNRs have been employed for carbaryl detection using a standard addition technique in three different samples of vegetables (cabbage, cucumber, and Chinese cabbage) with its results (%recovery ≈ 100%) within the acceptable analytical range. In conclusion, this work demonstrates the great potential of a disposable device based on an AuNR-modified SPCE for rapid detection and high sensitivity in monitoring the concentration of carbaryl as a residual pesticide in vegetable samples.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Analytical
Chemistry Division, Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
- Tropical
Biopharmaca Research Center, Institute of Research and Community Empowerment, IPB University, Bogor 16680, Indonesia
| | - Budi Riza Putra
- Research
Center for Metallurgy, National Research
and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South
Tangerang, Banten 15315, Indonesia
| | - Hemas Arif Rahman
- Analytical
Chemistry Division, Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Tribidasari A. Ivandini
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| | - Irkham
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Padjajaran, Bandung 45363, Indonesia
| | - Munawar Khalil
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| | - Isnaini Rahmawati
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| |
Collapse
|
5
|
Nath P, Mahtaba KR, Ray A. Fluorescence-Based Portable Assays for Detection of Biological and Chemical Analytes. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115053. [PMID: 37299780 DOI: 10.3390/s23115053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Fluorescence-based detection techniques are part of an ever-expanding field and are widely used in biomedical and environmental research as a biosensing tool. These techniques have high sensitivity, selectivity, and a short response time, making them a valuable tool for developing bio-chemical assays. The endpoint of these assays is defined by changes in fluorescence signal, in terms of its intensity, lifetime, and/or shift in spectrum, which is monitored using readout devices such as microscopes, fluorometers, and cytometers. However, these devices are often bulky, expensive, and require supervision to operate, which makes them inaccessible in resource-limited settings. To address these issues, significant effort has been directed towards integrating fluorescence-based assays into miniature platforms based on papers, hydrogels, and microfluidic devices, and to couple these assays with portable readout devices like smartphones and wearable optical sensors, thereby enabling point-of-care detection of bio-chemical analytes. This review highlights some of the recently developed portable fluorescence-based assays by discussing the design of fluorescent sensor molecules, their sensing strategy, and the fabrication of point-of-care devices.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Kazi Ridita Mahtaba
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|