1
|
Cinotti E, Centracchio J, Parlato S, Andreozzi E, Esposito D, Muto V, Bifulco P, Riccio M. A Narrowband IoT Personal Sensor for Long-Term Heart Rate Monitoring and Atrial Fibrillation Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:4432. [PMID: 39065829 PMCID: PMC11280519 DOI: 10.3390/s24144432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Long-term patient monitoring is required for detection of episodes of atrial fibrillation, one of the most widespread cardiac pathologies. Today, the most used non-invasive technique is Holter electrocardiographic (ECG) monitoring, which can often prove ineffective because of the short duration of recordings (e.g., one day). Other techniques such as photo-plethysmography are adopted by smartwatches for much longer duration monitoring, but this has the disadvantage of offering only intermittent measurements. This study proposes an Internet of Things (IoT) sensor that can provide a very long period of continuous monitoring. The sensor consists of an ECG-integrated Analog Front End (MAX30003), a microcontroller (STM32F401RE), and an IoT narrowband module (STEVAL-STMODLTE). The instantaneous heart rate is extracted from the ECG recording in real time. At intervals of two minutes, the sequence of inter-beat intervals is transmitted to an IoT cloud platform (ThingSpeak). Settled atrial fibrillation event recognition software runs on the cloud and generates alerts when it recognizes such arrhythmia. Performances of the proposed sensor were evaluated by generating analog ECG signals from a public dataset of ECG signals with atrial fibrillation episodes, the MIT-BIH Atrial Fibrillation Database, each recording lasting approximately 10 h. Software implementing the Lorentz algorithm, one of the best detectors of atrial fibrillation, was implemented on the cloud platform. The accuracy, sensitivity, and specificity in recognizing atrial fibrillation episodes of the proposed system was calculated by comparison with a cardiologist's reference data. Across all patients, the proposed method achieved an accuracy of 0.88, a sensitivity 0.71, and a specificity 0.99. The results obtained suggest that the developed system can continuously record and transmit heart rhythms effectively and efficiently and, in addition, offers considerable performance in recognizing atrial fibrillation episodes in real time.
Collapse
Affiliation(s)
- Eliana Cinotti
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, via Claudio, 21, 80125 Naples, Italy; (E.C.); (J.C.); (S.P.); (E.A.); (V.M.); (P.B.); (M.R.)
| | - Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, via Claudio, 21, 80125 Naples, Italy; (E.C.); (J.C.); (S.P.); (E.A.); (V.M.); (P.B.); (M.R.)
| | - Salvatore Parlato
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, via Claudio, 21, 80125 Naples, Italy; (E.C.); (J.C.); (S.P.); (E.A.); (V.M.); (P.B.); (M.R.)
| | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, via Claudio, 21, 80125 Naples, Italy; (E.C.); (J.C.); (S.P.); (E.A.); (V.M.); (P.B.); (M.R.)
| | - Daniele Esposito
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo Muto
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, via Claudio, 21, 80125 Naples, Italy; (E.C.); (J.C.); (S.P.); (E.A.); (V.M.); (P.B.); (M.R.)
| | - Paolo Bifulco
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, via Claudio, 21, 80125 Naples, Italy; (E.C.); (J.C.); (S.P.); (E.A.); (V.M.); (P.B.); (M.R.)
| | - Michele Riccio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, via Claudio, 21, 80125 Naples, Italy; (E.C.); (J.C.); (S.P.); (E.A.); (V.M.); (P.B.); (M.R.)
| |
Collapse
|
2
|
Hossein A, Abdessater E, Balali P, Cosneau E, Gorlier D, Rabineau J, Almorad A, Faoro V, van de Borne P. Smartphone-Derived Seismocardiography: Robust Approach for Accurate Cardiac Energy Assessment in Patients with Various Cardiovascular Conditions. SENSORS (BASEL, SWITZERLAND) 2024; 24:2139. [PMID: 38610349 PMCID: PMC11014030 DOI: 10.3390/s24072139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Seismocardiography (SCG), a method for measuring heart-induced chest vibrations, is gaining attention as a non-invasive, accessible, and cost-effective approach for cardiac pathologies, diagnosis, and monitoring. This study explores the integration of SCG acquired through smartphone technology by assessing the accuracy of metrics derived from smartphone recordings and their consistency when performed by patients. Therefore, we assessed smartphone-derived SCG's reliability in computing median kinetic energy parameters per record in 220 patients with various cardiovascular conditions. The study involved three key procedures: (1) simultaneous measurements of a validated hardware device and a commercial smartphone; (2) consecutive smartphone recordings performed by both clinicians and patients; (3) patients' self-conducted home recordings over three months. Our findings indicate a moderate-to-high reliability of smartphone-acquired SCG metrics compared to those obtained from a validated device, with intraclass correlation (ICC) > 0.77. The reliability of patient-acquired SCG metrics was high (ICC > 0.83). Within the cohort, 138 patients had smartphones that met the compatibility criteria for the study, with an observed at-home compliance rate of 41.4%. This research validates the potential of smartphone-derived SCG acquisition in providing repeatable SCG metrics in telemedicine, thus laying a foundation for future studies to enhance the precision of at-home cardiac data acquisition.
Collapse
Affiliation(s)
- Amin Hossein
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Cardio-Pulmonary Exercise Laboratory, Faculty of Motor Sciences, Université Libre de Bruxelles, Erasme Campus, Anderlecht, 1070 Brussels, Belgium
| | - Elza Abdessater
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Paniz Balali
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | | | | | - Jérémy Rabineau
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium
| | - Vitalie Faoro
- Cardio-Pulmonary Exercise Laboratory, Faculty of Motor Sciences, Université Libre de Bruxelles, Erasme Campus, Anderlecht, 1070 Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| |
Collapse
|
3
|
Schipper F, van Sloun RJG, Grassi A, Brouwer J, van Meulen F, Overeem S, Fonseca P. Maximum a posteriori detection of heartbeats from a chest-worn accelerometer. Physiol Meas 2024; 45:035009. [PMID: 38430565 DOI: 10.1088/1361-6579/ad2f5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/01/2024] [Indexed: 03/04/2024]
Abstract
Objective. Unobtrusive long-term monitoring of cardiac parameters is important in a wide variety of clinical applications, such as the assesment of acute illness severity and unobtrusive sleep monitoring. Here we determined the accuracy and robustness of heartbeat detection by an accelerometer worn on the chest.Approach. We performed overnight recordings in 147 individuals (69 female, 78 male) referred to two sleep centers. Two methods for heartbeat detection in the acceleration signal were compared: one previously described approach, based on local periodicity, and a novel extended method incorporating maximumaposterioriestimation and a Markov decision process to approach an optimal solution.Main results. The maximumaposterioriestimation significantly improved performance, with a mean absolute error for the estimation of inter-beat intervals of only 3.5 ms, and 95% limits of agreement of -1.7 to +1.0 beats per minute for heartrate measurement. Performance held during posture changes and was only weakly affected by the presence of sleep disorders and demographic factors.Significance. The new method may enable the use of a chest-worn accelerometer in a variety of applications such as ambulatory sleep staging and in-patient monitoring.
Collapse
Affiliation(s)
- Fons Schipper
- Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Philips Research, Philips, Eindhoven, The Netherlands
| | - Ruud J G van Sloun
- Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Philips Research, Philips, Eindhoven, The Netherlands
| | - Angela Grassi
- Philips Research, Philips, Eindhoven, The Netherlands
| | - Jan Brouwer
- Philips Research, Philips, Eindhoven, The Netherlands
| | - Fokke van Meulen
- Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Kempenhaeghe Center for Sleep Medicine, Heeze, The Netherlands
| | - Sebastiaan Overeem
- Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Kempenhaeghe Center for Sleep Medicine, Heeze, The Netherlands
| | - Pedro Fonseca
- Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Philips Research, Philips, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Centracchio J, Parlato S, Esposito D, Andreozzi E. Accurate Localization of First and Second Heart Sounds via Template Matching in Forcecardiography Signals. SENSORS (BASEL, SWITZERLAND) 2024; 24:1525. [PMID: 38475062 DOI: 10.3390/s24051525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Cardiac auscultation is an essential part of physical examination and plays a key role in the early diagnosis of many cardiovascular diseases. The analysis of phonocardiography (PCG) recordings is generally based on the recognition of the main heart sounds, i.e., S1 and S2, which is not a trivial task. This study proposes a method for an accurate recognition and localization of heart sounds in Forcecardiography (FCG) recordings. FCG is a novel technique able to measure subsonic vibrations and sounds via small force sensors placed onto a subject's thorax, allowing continuous cardio-respiratory monitoring. In this study, a template-matching technique based on normalized cross-correlation was used to automatically recognize heart sounds in FCG signals recorded from six healthy subjects at rest. Distinct templates were manually selected from each FCG recording and used to separately localize S1 and S2 sounds, as well as S1-S2 pairs. A simultaneously recorded electrocardiography (ECG) trace was used for performance evaluation. The results show that the template matching approach proved capable of separately classifying S1 and S2 sounds in more than 96% of all heartbeats. Linear regression, correlation, and Bland-Altman analyses showed that inter-beat intervals were estimated with high accuracy. Indeed, the estimation error was confined within 10 ms, with negligible impact on heart rate estimation. Heart rate variability (HRV) indices were also computed and turned out to be almost comparable with those obtained from ECG. The preliminary yet encouraging results of this study suggest that the template matching approach based on normalized cross-correlation allows very accurate heart sounds localization and inter-beat intervals estimation.
Collapse
Affiliation(s)
- Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, I-80125 Naples, Italy
| | - Salvatore Parlato
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, I-80125 Naples, Italy
| | - Daniele Esposito
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, I-80125 Naples, Italy
| | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, I-80125 Naples, Italy
| |
Collapse
|
5
|
Parlato S, Centracchio J, Esposito D, Bifulco P, Andreozzi E. ECG-Free Heartbeat Detection in Seismocardiography and Gyrocardiography Signals Provides Acceptable Heart Rate Variability Indices in Healthy and Pathological Subjects. SENSORS (BASEL, SWITZERLAND) 2023; 23:8114. [PMID: 37836942 PMCID: PMC10575135 DOI: 10.3390/s23198114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Cardio-mechanical monitoring techniques, such as Seismocardiography (SCG) and Gyrocardiography (GCG), have received an ever-growing interest in recent years as potential alternatives to Electrocardiography (ECG) for heart rate monitoring. Wearable SCG and GCG devices based on lightweight accelerometers and gyroscopes are particularly appealing for continuous, long-term monitoring of heart rate and its variability (HRV). Heartbeat detection in cardio-mechanical signals is usually performed with the support of a concurrent ECG lead, which, however, limits their applicability in standalone cardio-mechanical monitoring applications. The complex and variable morphology of SCG and GCG signals makes the ECG-free heartbeat detection task quite challenging; therefore, only a few methods have been proposed. Very recently, a template matching method based on normalized cross-correlation (NCC) has been demonstrated to provide very accurate detection of heartbeats and estimation of inter-beat intervals in SCG and GCG signals of pathological subjects. In this study, the accuracy of HRV indices obtained with this template matching method is evaluated by comparison with ECG. Tests were performed on two public datasets of SCG and GCG signals from healthy and pathological subjects. Linear regression, correlation, and Bland-Altman analyses were carried out to evaluate the agreement of 24 HRV indices obtained from SCG and GCG signals with those obtained from ECG signals, simultaneously acquired from the same subjects. The results of this study show that the NCC-based template matching method allowed estimating HRV indices from SCG and GCG signals of healthy subjects with acceptable accuracy. On healthy subjects, the relative errors on time-domain indices ranged from 0.25% to 15%, on frequency-domain indices ranged from 10% to 20%, and on non-linear indices were within 8%. The estimates obtained on signals from pathological subjects were affected by larger errors. Overall, GCG provided slightly better performances as compared to SCG, both on healthy and pathological subjects. These findings provide, for the first time, clear evidence that monitoring HRV via SCG and GCG sensors without concurrent ECG is feasible with the NCC-based template matching method for heartbeat detection.
Collapse
Affiliation(s)
| | - Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy; (S.P.); (D.E.); (P.B.)
| | | | | | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy; (S.P.); (D.E.); (P.B.)
| |
Collapse
|