1
|
Duval JFL, Maffei L, Delatour E, Zaffino M, Pagnout C. Kinetics of metal detection by luminescence-based whole-cell biosensors: connecting biosensor response to metal bioavailability, speciation and cell metabolism. Phys Chem Chem Phys 2023; 25:30276-30295. [PMID: 37930226 DOI: 10.1039/d3cp04653b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Luminescent whole-cell metal biosensors are genetically engineered cells used for the detection of metals in e.g. aqueous solutions. Herein, we detail the quantitative connections between time-response of luminescent bacterial metal sensors and the bioavailability of free and complexed metal species. To that end, we formulate the biophysicochemical dynamics of metal partitioning at a biosensor/solution interface and integrate the required metabolism contribution to cell response. The formalism explains the ways in which cell signal depends on: coupled Eigen kinetics of metal complexation and diffusion of metal species to/from the interface; kinetics of metal excretion, Michaelis-Menten bioaccumulation and ensuing metal depletion from bulk solution; and kinetics of bioluminescence production following intracellular metal sequestration by regulatory metalloproteins. In turn, an expression is derived for the time-dependent cell signal as a function of interrelated (bioavai)lability of metal species and (thermo)dynamic descriptors of extra/intracellular metal complexation. Quantitative criteria are elaborated to identify scenarios where equilibrium modeling of metal speciation is incorrect, bulk metal depletion is operative, metal biouptake kinetics is governed by metal diffusion, or labile metal complexes fully contribute to cell response. Remarkably, in agreement with experiments, the theory predicts time-shifts of bioluminescence peaks with increasing concentration of biosensor and/or metal ligand in solution. We show that these shifts originate from the crosstalk between activation kinetics of cell photoactivity and speciation-dependent kinetics of bulk metal depletion. Overall, the work paves the way for the elaboration of new strategies to exploit the bioluminescence response of metal lux-biosensors at a dynamic level and evaluate metal bioavailability properties in environmental or biological aqueous samples.
Collapse
Affiliation(s)
| | - Lorenzo Maffei
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Eva Delatour
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | |
Collapse
|
2
|
Nelson MT, Coia HG, Holt C, Greenwood ES, Narayanan L, Robinson PJ, Merrill EA, Litteral V, Goodson MS, Saldanha RJ, Grogg MW, Mauzy CA. Evaluation of Human Performance Aiding Live Synthetically Engineered Bacteria in a Gut-on-a-Chip. ACS Biomater Sci Eng 2023; 9:5136-5150. [PMID: 36198112 DOI: 10.1021/acsbiomaterials.2c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synbiotics are a new class of live therapeutics employing engineered genetic circuits. The rapid adoption of genetic editing tools has catalyzed the expansion of possible synbiotics, exceeding traditional testing paradigms in terms of both throughput and model complexity. Herein, we present a simplistic gut-chip model using common Caco2 and HT-29 cell lines to establish a dynamic human screening platform for a cortisol sensing tryptamine producing synbiotic for cognitive performance sustainment. The synbiotic, SYN, was engineered from the common probiotic E. coli Nissle 1917 strain. It had the ability to sense cortisol at physiological concentrations, resulting in the activation of a genetic circuit that produces tryptophan decarboxylase and converts bioavailable tryptophan to tryptamine. SYN was successfully cultivated within the gut-chip showing log-phase growth comparable to the wild-type strain. Tryptophan metabolism occurred quickly in the gut compartment when exposed to 5 μM cortisol, resulting in the complete conversion of bioavailable tryptophan into tryptamine. The flux of tryptophan and tryptamine from the gut to the vascular compartment of the chip was delayed by 12 h, as indicated by the detectable tryptamine in the vascular compartment. The gut-chip provided a stable environment to characterize the sensitivity of the cortisol sensor and dynamic range by altering cortisol and tryptophan dosimetry. Collectively, the human gut-chip provided human relevant apparent permeability to assess tryptophan and tryptamine metabolism, production, and transport, enabled host analyses of cellular viability and pro-inflammatory cytokine secretion, and succeeded in providing an efficacy test of a novel synbiotic. Organ-on-a-chip technology holds promise in aiding traditional therapeutic pipelines to more rapidly down select high potential compounds that reduce the failure rate and accelerate the opportunity for clinical intervention.
Collapse
Affiliation(s)
- M Tyler Nelson
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Heidi G Coia
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- National Research Council, The National Academies of Sciences, Engineering, and Medicine, 500 Fifth Street N.W., Washington, D.C. 20001, United States
| | - Corey Holt
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Eric S Greenwood
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Latha Narayanan
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- The Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Peter J Robinson
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- The Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Elaine A Merrill
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Vaughn Litteral
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- UES Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Michael S Goodson
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Roland J Saldanha
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Matthew W Grogg
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Camilla A Mauzy
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
3
|
Ma Z, Meliana C, Munawaroh HSH, Karaman C, Karimi-Maleh H, Low SS, Show PL. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. CHEMOSPHERE 2022; 306:135515. [PMID: 35772520 DOI: 10.1016/j.chemosphere.2022.135515] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial biosensor which integrates different types of microorganisms, such as bacteria, microalgae, fungi, and virus have become suitable technologies to address limitations of conventional analytical methods. The main applications of biosensors include the detection of environmental pollutants, pathogenic bacteria and compounds related to illness, and food quality. Each type of microorganisms possesses advantages and disadvantages with different mechanisms to detect the analytes of interest. Furthermore, there is an increasing trend in genetic modifications for the development of microbial biosensors due to potential for high-throughput analysis and portability. Many review articles have discussed the applications of microbial biosensor, but many of them focusing only about bacterial-based biosensor although other microbes also possess many advantages. Additionally, reviews on the applications of all microbes as biosensor especially viral and microbial fuel cell biosensors are also still limited. Therefore, this review summarizes all the current applications of bacterial-, microalgal-, fungal-, viral-based biosensor in regard to environmental, food, and medical-related applications. The underlying mechanism of each microbes to detect the analytes are also discussed. Additionally, microbial fuel cell biosensors which have great potential in the future are also discussed. Although many advantageous microbial-based biosensors have been discovered, other areas such as forensic detection, early detection of bacteria or virus species that can lead to pandemics, and others still need further investigation. With that said, microbial-based biosensors have promising potential for vast applications where the biosensing performance of various microorganisms are presented in this review along with future perspectives to resolve problems related on microbial biosensors.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Catarina Meliana
- Department of Food Science and Nutrition, Faculty of Life Science, Indonesia International Institute of Life Sciences, Jakarta, 13210, Indonesia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Chitayat Levi L, Rippin I, Ben Tulila M, Galron R, Tuller T. Modulating Gene Expression within a Microbiome Based on Computational Models. BIOLOGY 2022; 11:biology11091301. [PMID: 36138780 PMCID: PMC9495703 DOI: 10.3390/biology11091301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Development of computational biology methodologies has provided comprehensive understanding of the complexity of microbiomes, and the extensive ways in which they influence their environment. This has awakened a new research goal, aiming to not only understand the mechanisms in which microbiomes function, but to actively modulate and engineer them for various purposes. However, current microbiome engineering techniques are usually manually tailored for a specific system and neglect the different interactions between the new genetic information and the bacterial population, turning a blind eye to processes such as horizontal gene transfer, mutations, and other genetic alterations. In this work, we developed a generic computational method to automatically tune the expression of heterologous genes within a microbiome according to given preferences, to allow the functionality of the engineering process to propagate in longer periods of time. This goal was achieved by treating each part of the gene individually and considering long term fitness effects on the environment, providing computational and experimental evidence for this approach. Abstract Recent research in the field of bioinformatics and molecular biology has revealed the immense complexity and uniqueness of microbiomes, while also showcasing the impact of the symbiosis between a microbiome and its host or environment. A core property influencing this process is horizontal gene transfer between members of the bacterial community used to maintain genetic variation. The essential effect of this mechanism is the exposure of genetic information to a wide array of members of the community, creating an additional “layer” of information in the microbiome named the “plasmidome”. From an engineering perspective, introduction of genetic information to an environment must be facilitated into chosen species which will be able to carry out the desired effect instead of competing and inhibiting it. Moreover, this process of information transfer imposes concerns for the biosafety of genetic engineering of microbiomes as exposure of genetic information into unwanted hosts can have unprecedented ecological impacts. Current technologies are usually experimentally developed for a specific host/environment, and only deal with the transformation process itself at best, ignoring the impact of horizontal gene transfer and gene-microbiome interactions that occur over larger periods of time in uncontrolled environments. The goal of this research was to design new microbiome-specific versions of engineered genetic information, providing an additional layer of compatibility to existing engineering techniques. The engineering framework is entirely computational and is agnostic to the selected microbiome or gene by reducing the problem into the following set up: microbiome species can be defined as wanted or unwanted hosts of the modification. Then, every element related to gene expression (e.g., promoters, coding regions, etc.) and regulation is individually examined and engineered by novel algorithms to provide the defined expression preferences. Additionally, the synergistic effect of the combination of engineered gene blocks facilitates robustness to random mutations that might occur over time. This method has been validated using both computational and experimental tools, stemming from the research done in the iGEM 2021 competition, by the TAU group.
Collapse
Affiliation(s)
- Liyam Chitayat Levi
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv 997801, Israel
| | - Ido Rippin
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 997801, Israel
| | - Moran Ben Tulila
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv 997801, Israel
| | - Rotem Galron
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv 997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv 997801, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 997801, Israel
- Correspondence:
| |
Collapse
|
5
|
Whole-cell electric sensor for determination of sodium dodecyl sulfate. World J Microbiol Biotechnol 2022; 38:118. [PMID: 35614280 PMCID: PMC9132749 DOI: 10.1007/s11274-022-03309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
Abstract
Linear alkyl sulfates are a major class of surfactants that have large-scale industrial application and thus wide environmental release. These organic pollutants threaten aquatic environments and other environmental compartments. We show the promise of the use of a whole-cell electric sensor in the analysis of low or residual concentrations of sodium dodecyl sulfate (SDS) in aqueous solutions. On the basis of bioinformatic analysis and alkylsulfatase activity determinations, we chose the gram-negative bacterium Herbaspirillum lusitanum, strain P6–12, as the sensing element. Strain P6–12 could utilize 0.01–400 mg/L of SDS as a growth substrate. The electric polarizability of cell suspensions changed at all frequencies used (50–3000 kHz). The determination limit of 0.01 mg/L is much lower than the official requirements for the content of SDS in potable and process water (0.5 and 1.0 mg/L, respectively), and the analysis takes about 1–5 min. The promise of H. lusitanum P6–12 for use in the remediation of SDS-polluted soils is discussed.
Collapse
|
6
|
Exploiting Catabolite Repression and Stringent Response to Control Delay and Multimodality of Bioluminescence Signal by Metal Whole-Cell Biosensors: Interplay between Metal Bioavailability and Nutritional Medium Conditions. BIOSENSORS 2022; 12:bios12050327. [PMID: 35624628 PMCID: PMC9139025 DOI: 10.3390/bios12050327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022]
Abstract
The time-dependent response of metal-detecting whole-cell luminescent bacterial sensors is impacted by metal speciation/bioavailability in solution. The comprehensive understanding of such connections requires the consideration of the bacterial energy metabolism at stake and the effects of supplied food on cells’ capability to convert bioaccumulated metals into light. Accordingly, we investigated the time response (48 h assay) of PzntA-luxCDABE Escherichia coli Cd biosensors in media differing with respect to sources of amino acids (tryptone or Lysogeny Broth) and carbon (glucose, xylose and mixtures thereof). We show that the resulting coupling between the stringent cell response and glucose/xylose-mediated catabolite repressions lead to well-defined multimodalities and shapes of the bioluminescence signal over time. Based on a recent theory for the time–response of metal-sensing luminescent bacteria, successful theoretical reconstructions of the bioluminescence signals are reported under all Cd concentrations (0–20 nM) and nutritive conditions examined. This analysis leads to the evaluation of time-dependent cell photoactivity and qualitative information on metal speciation/bioavailability in solution. Biosensor performance and the position, shape, number, and magnitude of detected peaks are discussed in relation to the metabolic pathways operative during the successive light emission modes identified here over time. Altogether, the results clarify the contributions of metal/nutrient bio-availabilities and food quality to cell response typology.
Collapse
|
7
|
Abstract
Crude oil is a viscous dark liquid resource composed by a mix of hydrocarbons which, after refining, is used for the elaboration of distinct products. A major concern is that many petroleum components are highly toxic due to their teratogenic, hemotoxic, and carcinogenic effects, becoming an environmental concern on a global scale, which must be solved through innovative, efficient, and sustainable techniques. One of the most widely used procedures to totally degrade contaminants are biological methods such as bioremediation. Synthetic biology is a scientific field based on biology and engineering principles, with the purpose of redesigning and restructuring microorganisms to optimize or create new biological systems with enhanced features. The use of this discipline offers improvement of bioremediation processes. This article will review some of the techniques that use synthetic biology as a platform to be used in the area of hydrocarbon bioremediation.
Collapse
|
8
|
Moratti CF, Scott C, Coleman NV. Synthetic Biology Approaches to Hydrocarbon Biosensors: A Review. Front Bioeng Biotechnol 2022; 9:804234. [PMID: 35083206 PMCID: PMC8784404 DOI: 10.3389/fbioe.2021.804234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Monooxygenases are a class of enzymes that facilitate the bacterial degradation of alkanes and alkenes. The regulatory components associated with monooxygenases are nature's own hydrocarbon sensors, and once functionally characterised, these components can be used to create rapid, inexpensive and sensitive biosensors for use in applications such as bioremediation and metabolic engineering. Many bacterial monooxygenases have been identified, yet the regulation of only a few of these have been investigated in detail. A wealth of genetic and functional diversity of regulatory enzymes and promoter elements still remains unexplored and unexploited, both in published genome sequences and in yet-to-be-cultured bacteria. In this review we examine in detail the current state of research on monooxygenase gene regulation, and on the development of transcription-factor-based microbial biosensors for detection of alkanes and alkenes. A new framework for the systematic characterisation of the underlying genetic components and for further development of biosensors is presented, and we identify focus areas that should be targeted to enable progression of more biosensor candidates to commercialisation and deployment in industry and in the environment.
Collapse
Affiliation(s)
- Claudia F. Moratti
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Lee Y, Jeon Y, Jang G, Yoon Y. Derivation of pb(II)-sensing Escherichia coli cell-based biosensors from arsenic responsive genetic systems. AMB Express 2021; 11:169. [PMID: 34910261 PMCID: PMC8674403 DOI: 10.1186/s13568-021-01329-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
Heavy metal-responsive operons were used for the generation of Escherichia coli cell-based biosensors. The selectivity and specificity of the biosensors were determined based on the interaction between heavy metals and regulatory proteins; thereby, the modulating target selectivity of biosensors could be achieved by changing target sensing properties of regulatory proteins. The results of this study demonstrated that Pb(II)-sensing biosensors could be generated from an arsenic-responsive genetic system, which was originally used for arsenic-sensing biosensors. The amino acids around to As(III)-binding sites of ArsR were mutated and cysteine residues were relocated to modulate the metal selectivity. In addition, genes encoding metal ion-translocating P-type ATPases, such as copA and zntA, were deleted to enhance the specificity by increasing the intercellular levels of divalent metal ions. Based on the results, channel protein deleted E. coli cells harboring a pair of recombinant genes, engineered ArsR and arsAp::egfp, showed enhanced responses upon Pb exposure and could be used to quantify the amount of Pb(II) in artificially contaminated water and plants grown in media containing Pb(II). Although we focused on generating Pb(II)-specific biosensors in this study, the proposed strategy has a great potential for the generation of diverse heavy metal-sensing biosensors and risk assessment of heavy metals in environmental samples as well as in plants.
Collapse
|
10
|
Chen F, Warnock RL, Van der Meer JR, Wegner SV. Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury. ACS Sens 2020; 5:2205-2210. [PMID: 32583665 DOI: 10.1021/acssensors.0c00855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new concept for whole-cell biosensors that couples the response to Hg2+ with bioluminescence and bacterial aggregation. This allows us to use the bacterial aggregation to preconcentrate the bioluminescent bacteria at the substrate surface and increase the sensitivity of Hg2+ detection. This whole-cell biosensor combines a Hg2+-sensitive bioluminescence reporter and light-responsive bacterial cell-cell adhesions. We demonstrate that the blue luminescence in response to Hg2+ is able to photoactivate bacterial aggregation, which provides a second readout for Hg2+ detection. In return, the Hg2+-triggered bacterial aggregation leads to faster sedimentation and more efficient formation of biofilms. At low Hg2+ concentrations, the enrichment of the bacteria in biofilms leads to an up to 10-fold increase in the signal. The activation of photoswitchable proteins with biological light is a new concept in optogenetics, and the presented bacterial biosensor design is transferable to other bioluminescent reporters with particular interest for environmental monitoring.
Collapse
Affiliation(s)
- Fei Chen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Rachel L. Warnock
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Seraphine V. Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
11
|
Yazgan Karacaglar NN, Topcu A, Dudak FC, Boyaci IH. Development of a green fluorescence protein (GFP)-based bioassay for detection of antibiotics and its application in milk. J Food Sci 2020; 85:500-509. [PMID: 31958152 DOI: 10.1111/1750-3841.14996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 11/30/2022]
Abstract
Antibiotics are one of the most widely used types of drugs in pharmaceutics. However, efficiency of these drugs has decreased recently owing to the threat of antibiotic resistance. One of the important factors causing antibiotic resistance is the excessive use of antibacterials in animals. Therefore, detection of antibiotics in foods of animal origin is crucial. The aim of this study was to develop a novel whole-cell based bioassay to be used for detection of some antibiotics. Green fluorescent protein (GFP)-expressing Escherichia coli cells were used as a recognition agent, and antibiotic detection was carried out by pursuing the inhibition rate of fluorescence intensity as a result of the inhibition of viable cells by the time of progress. The performance of bioassay was tested for different antibiotics, and the obtained results showed that the developed method can be used successfully for detection of ampicillin, benzylpenicillin, gentamicin, neomycin, and tetracycline with the limit of detection (LOD) values of 3.33, 0.29, 28.00, 618.36, and 33.17 µg/L, respectively. The assay was also tested with antibiotic spiked milk samples (skimmed UHT, full-fat UHT, and whole raw milk). According to obtained recovery values, developed method was successful for all samples. The precision and bias values of the method were found between the range of 1.30% to 7.54% and -8.00% to 0.64%, respectively. The developed method, which is inexpensive and simple with detection limits in line with the regulatory limits, is promising for use in milk quality monitoring. Method has potential to be used as a screening method after comprehensive validation. PRACTICAL APPLICATION: This method could be used in animal husbandry to check whether the antibiotic prescribed for the treatment of sick animals is still present in their milk as residual. For dairy industry, detection of residual antibiotics in milk is crucial because of their inhibition effects on the fermentation processes. Therefore, the proposed method can be used for routine analysis of raw milk reception in dairy industries. In addition, it is considered to have a wide range of applications for all foods.
Collapse
Affiliation(s)
| | - Ali Topcu
- Dept. of Food Engineering, Faculty of Engineering, Hacettepe Univ., Beytepe, 06800, Ankara, Turkey
| | - Fahriye Ceyda Dudak
- Dept. of Food Engineering, Faculty of Engineering, Hacettepe Univ., Beytepe, 06800, Ankara, Turkey
| | - Ismail Hakki Boyaci
- Dept. of Food Engineering, Faculty of Engineering, Hacettepe Univ., Beytepe, 06800, Ankara, Turkey
| |
Collapse
|
12
|
Harding BI, Pollak NM, Stefanovic D, Macdonald J. Repeated Reuse of Deoxyribozyme-Based Logic Gates. NANO LETTERS 2019; 19:7655-7661. [PMID: 31615207 DOI: 10.1021/acs.nanolett.9b02326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Deoxyribozymes (DNAzymes) have demonstrated a significant capacity for biocomputing and hold promise for information processing within advanced biological devices if several key capabilities are developed. One required capability is reuse-having DNAzyme logic gates be cyclically, and controllably, activated and deactivated. We designed an oligonucleotide-based system for DNAzyme reuse that could (1) remove previously bound inputs by addition of complementary oligonucleotides via toe-hold mediated binding and (2) diminish output signal through the addition of quencher-labeled oligonucleotides complementary to the fluorophore-bound substrate. Our system demonstrated, for the first time, the ability for DNAzymes to have their activity toggled, with activity returning to 90-125% of original activity. This toggling could be performed multiple times with control being exerted over when the toggling occurs, with three clear cycles observed before the variability in activity became too great. Our data also demonstrated that fluorescent output of the DNAzyme activity could be actively removed and regenerated. This reuse system can increase the efficiency of DNAzyme-based logic circuits by reducing the number of redundant oligonucleotides and is critical for future development of reusable biodevices controlled by logical operations.
Collapse
Affiliation(s)
- Bradley I Harding
- Genecology Research Centre, School of Science and Engineering , University of the Sunshine Coast , Sippy Downs , QLD 4556 , Australia
| | - Nina M Pollak
- Genecology Research Centre, School of Science and Engineering , University of the Sunshine Coast , Sippy Downs , QLD 4556 , Australia
- CSIRO Synthetic Biology Future Science Platform , GPO Box 1700, Canberra , ACT 2601 , Australia
| | - Darko Stefanovic
- Department of Computer Science , University of New Mexico , Albuquerque , New Mexico 87131 , United States
- Center for Biomedical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Joanne Macdonald
- Genecology Research Centre, School of Science and Engineering , University of the Sunshine Coast , Sippy Downs , QLD 4556 , Australia
- Division of Experimental Therapeutics, Department of Medicine , Columbia University , New York , New York 10032 , United States
| |
Collapse
|
13
|
Patel R, Zaveri P, Mukherjee A, Agarwal PK, More P, Munshi NS. Development of fluorescent protein-based biosensing strains: A new tool for the detection of aromatic hydrocarbon pollutants in the environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109450. [PMID: 31349104 DOI: 10.1016/j.ecoenv.2019.109450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/29/2019] [Accepted: 07/15/2019] [Indexed: 05/21/2023]
Abstract
The major sources for release of hydrocarbons into the environment include the effluents generated from chemical processing industries and ports. The introduction of such hazardous compounds into natural water bodies creates considerable disturbances in aquatic life and causes a threat to humans. Thus, it is essential to detect and quantify pollutants at various stages of the wastewater generation and treatment before they reach natural aquatic environments and contaminate them. This study reports the development of "biosensing strains" by cloning hydrocarbon recognizing promoter-operator and a reporter gene in bacterial strains for sensing the presence of pollutants at their lowest possible concentration. So far, various biosensing strains have been constructed with a fused promoter-operator region of the hydrocarbon degrading operons, but most of them use luxAB as a reporter gene. A novel approach in the present study aimed at constructing strains harboring two different fluorescent protein (FP)-based reporter genes for the quantification of multiple pollutants at a time. Two vectors were designed with a fusion of tbuT-gfp and phnR-cfp for the quantification of mono- and poly-aromatic hydrocarbons, respectively. The designed vectors were transformed into E. coli DH5α, and these strains were designated as E. coli DH5α 2296-gfp (containing pPROBE-Tbut-RBS-gfp-npt) and E. coli DH5α 2301-cfp (containing pPROBE-phn-RBS-cfp-npt). Both the developed recombinant strains were capable of successfully detecting mono- and poly-aromatic hydrocarbons in the range of 1-100 μM. The sensing capacity of recombinant strains was successfully validated with actual wastewater samples against available physico-chemical analytical techniques. The development of such recombinant microbial strains indicates the future for online contaminant detection, treatment quality monitoring and protection of aquatic flora and fauna.
Collapse
Affiliation(s)
- Rushika Patel
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Purvi Zaveri
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Anwesha Mukherjee
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Pradeep K Agarwal
- Division of Biotechnology and Phycology, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Prashant More
- Division of Biotechnology and Phycology, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Nasreen S Munshi
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
14
|
Patel R, Chudasama R, Solanki R, Patel P, Parmar K, Munshi NS. Structure prediction and molecular docking studies of aromatic hydrocarbon sensing proteins TbuT, HbpR and PhnR to detect priority pollutants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:126-141. [PMID: 31566066 DOI: 10.1080/10934529.2019.1672457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
On-line detection of aromatic hydrocarbon pollutants in aqueous environments can be achieved by biosensing strains having fusion of gene responsible for pollutant sensing protein with a reporter gene. Regulatory proteins TbuT, HbpR and PhnR are such proteins for recognizing one-, two-and three-ring aromatic hydrocarbon pollutants respectively, for which the structure is not known till date. Aim of the present study was to predict the structure of proteins and to determine their in-silico interaction with array of pollutants. Structure prediction of proteins was performed using I-TASSER and Phyre2 and refined with ModRefiner and 3DRefine. Total 14 models were obtained for each protein and the best model had more than 95% coverage in Ramachandran plot region. After successful structure prediction, molecular interaction of proteins with respective aromatic hydrocarbon pollutants categorized by United States Environmental Protection Agency was studied using AutoDockVina where the binding energy was found to fall in range of -4.6 to -8.4 kcal/mol. The types of protein-pollutant interaction were analyzed by LigPlus and Discovery Studio 2017 R2 Client which were found to be similar for standard and pollutant compounds. This study enables us to predict the range of pollutants possible to be detected using these regulatory protein-based biosensors.
Collapse
Affiliation(s)
- Rushika Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rajesh Chudasama
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | | | - Priya Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Krupali Parmar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Nasreen S Munshi
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
15
|
Blanco-Ameijeiras S, Cabanes DJE, Hassler CS. Towards the development of a new generation of whole-cell bioreporters to sense iron bioavailability in oceanic systems-learning from the case of Synechococcus sp. PCC7002 iron bioreporter. J Appl Microbiol 2019; 127:1291-1304. [PMID: 30970168 DOI: 10.1111/jam.14277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/17/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
Abstract
Whole-cell bioreporters are genetically modified micro-organisms designed to sense bioavailable forms of nutrients or toxic compounds in aquatic systems. As they represent the most promising cost-efficient tools available for such purpose, engineering and use of bioreporters is rapidly growing in association with wide applicability. Bioreporters are urgently needed to determine phytoplankton iron (Fe) limitation, which has been reported in up to 30% of the ocean, with consequences affecting Earth's global carbon cycle and climate. This study presents a critical evaluation and optimization of the only Cyanobacteria bioreporter available to sense Fe limitation in marine systems (Synechococcus sp. PCC7002). The nonmonotonic biphasic dose-response curve between the bioreporters' signal and Fe bioavailability impairs an appropriate data interpretation, highlighting the need for new carefully designed bioreporters. Here, limitations under low Fe concentrations were related to cellular energy stress, nonlinear expression of the targeted promoter and siderophore expression. Furthermore, we provide critical standard criteria for the development of new Fe bioreporters. Finally, based on gene expression data under a range of marine Fe concentrations, we propose novel sensor genes for the development of new Cyanobacteria Fe bioreporters for distinct marine regions.
Collapse
Affiliation(s)
- S Blanco-Ameijeiras
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - D J E Cabanes
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - C S Hassler
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Abstract
Organohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
Collapse
|
17
|
Aharoni N, Mamane H, Biran D, Lakretz A, Ron EZ. Gene expression in Pseudomonas aeruginosa exposed to hydroxyl-radicals. CHEMOSPHERE 2018; 199:243-250. [PMID: 29448190 DOI: 10.1016/j.chemosphere.2018.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/23/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Recent studies have shown the efficiency of hydroxyl radicals generated via ultraviolet (UV)-based advanced oxidation processes (AOPs) combined with hydrogen peroxide (UV/H2O2) as a treatment process in water. The effects of AOP treatments on bacterial gene expression was examined using Pseudomonas aeruginosa strain PAO1 as a model-organism bacterium. Many bacterial genes are not expressed all the time, but their expression is regulated. The regulation is at the beginning of the gene, in a genetic region called "promoter" and affects the level of transcription (synthesis of messenger RNA) and translation (synthesis of protein). The level of expression of the regulated genes can change as a function of environmental conditions, and they can be expressed more (induced, upregulated) or less (downregulated). Exposure of strain PAO1 to UV/H2O2 treatment resulted in a major change in gene expression, including elevated expression of several genes. One interesting gene is PA3237, which was significantly upregulated under UV/H2O2 as compared to UV or H2O2 treatments alone. The induction of this gene is probably due to formation of radicals, as it is abolished in the presence of the radical scavenger tert-butanol (TBA) and is seen even when the bacteria are added after the treatment (post-treatment exposure). Upregulation of the PA3237 promoter could also be detected using a reporter gene, suggesting the use of such genetic constructs to develop biosensors for monitoring AOPs in water-treatment plants. Currently biosensors for AOPs do not exist, consequently impairing the ability to monitor these processes on-line according to radical exposure in natural waters.
Collapse
Affiliation(s)
- Noa Aharoni
- Porter School of Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Environmental Engineering Program, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Dvora Biran
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anat Lakretz
- School of Mechanical Engineering, Environmental Engineering Program, Tel Aviv University, Tel Aviv 69978, Israel; Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eliora Z Ron
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
18
|
He W, Hu ZH, Yuan S, Zhong WH, Mei YZ, Dai CC. Bacterial Bioreporter-Based Mercury and Phenanthrene Assessment in Yangtze River Delta Soils of China. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:562-570. [PMID: 29864184 DOI: 10.2134/jeq2017.07.0286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genetically engineered bacterial whole-cell bioreporters were deployed to investigate bioavailable mercury (b-Hg) and phenanthrene (b-PHE). Characterized by high sensitivity and specificity in aqueous solutions, the bioreporter system could detect in amended soils the concentrations of b-Hg and b-PHE in the ranges of 19.6 to 111.6 and 21.5 to 110.9 μg kg, respectively. The sensitivity of the system allowed for the combined analysis of b-Hg and b-PHE from real environmental samples. Therefore, soil samples from three large refinery facilities were tested, and the results from the instrumental analysis strongly correlated with the ones obtained with the bioreporter method. Large-scale and fast screening of soil contamination across the Yangtze River Delta in Eastern China was conducted. More than 36% of the samples contained b-Hg, whereas the fractions of b-PHE were below the detection limit for all the samples. These results indicated a higher toxicity and more hazardous condition for Hg contamination than for PHE. Population densities and airborne 10-μm particulate matter (PM10) concentrations were used as parameters for comparison with the spatial distribution of the b-Hg and b-PHE fractions. The results revealed that the bioreporters could offer a rapid and cost-efficient method to test soil samples from contaminated areas and provide a screening tool for environmental risk assessment.
Collapse
|
19
|
Deb S, Basu S, Singha A, Dutta TK. Development of a 2-Nitrobenzoate-Sensing Bioreporter Based on an Inducible Gene Cluster. Front Microbiol 2018; 9:254. [PMID: 29491862 PMCID: PMC5817917 DOI: 10.3389/fmicb.2018.00254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
Based on the sole information of structural genes of the 2-nitrobenzoate (2NBA) utilizing catabolic gene cluster (onbX1X2FCAR1EHJIGDBX3), 2NBA-sensing bioreporters were constructed by incorporating egfp into the onb gene cluster of Cupriavidus sp. strain ST-14. Incorporation of reporter gene in proximal to the hypothesized promoter region in conjunction with the disruption of the gene encoding inducer-metabolizing enzyme was turned out to be advantageous in reporter gene expression at low inducer concentration. The bioreporter strain was capable of expressing EGFP from the very 1st hour of induction and could detect 2NBA at (sub) nanomolar level exhibiting a strict specificity toward 2NBA, displaying no response to EGFP expression from its meta- and para-isomers as well as from a number of structurally related compounds. The present study is a successful demonstration of the development of a 2NBA-sensing bioreporter with respect to ease of construction, inducer specificity, and sensitivity, without prior knowledge of the associated inducer-responsive promoter-regulator elements. The present approach can be used as a model for the development of bioreporters for other environmental pollutants.
Collapse
Affiliation(s)
- Satamita Deb
- Department of Microbiology, Bose Institute, Kolkata, India
| | - Soumik Basu
- Department of Microbiology, Bose Institute, Kolkata, India
| | | | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata, India
| |
Collapse
|
20
|
Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient. Sci Rep 2017; 7:8959. [PMID: 28827562 PMCID: PMC5566481 DOI: 10.1038/s41598-017-08870-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022] Open
Abstract
Manipulation of cellular motility using a target signal can facilitate the development of biosensors or microbe-powered biorobots. Here, we engineered signal-dependent motility in Escherichia coli via the transcriptional control of a key motility gene. Without manipulating chemotaxis, signal-dependent switching of motility, either on or off, led to population-level directional movement of cells up or down a signal gradient. We developed a mathematical model that captures the behaviour of the cells, enables identification of key parameters controlling system behaviour, and facilitates predictive-design of motility-based pattern formation. We demonstrated that motility of the receiver strains could be controlled by a sender strain generating a signal gradient. The modular quorum sensing-dependent architecture for interfacing different senders with receivers enabled a broad range of systems-level behaviours. The directional control of motility, especially combined with the potential to incorporate tuneable sensors and more complex sensing-logic, may lead to tools for novel biosensing and targeted-delivery applications.
Collapse
|
21
|
|
22
|
The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens Bioelectron 2017; 89:224-233. [DOI: 10.1016/j.bios.2016.03.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/22/2016] [Accepted: 03/13/2016] [Indexed: 01/22/2023]
|
23
|
Tan J, Kan N, Wang W, Ling J, Qu G, Jin J, Shao Y, Liu G, Chen H. Construction of 2,4,6-Trinitrotoluene Biosensors with Novel Sensing Elements from Escherichia coli K-12 MG1655. Cell Biochem Biophys 2017; 72:417-28. [PMID: 25561288 DOI: 10.1007/s12013-014-0481-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Detection of 2,4,6-trinitrotoluene (TNT) has been extensively studied since it is a common explosive filling for landmines, posing significant threats to the environment and human safety. The rapid advances in synthetic biology give new hope to detect such toxic and hazardous compounds in a more sensitive and safe way. Biosensor construction anticipates finding sensing elements able to detect TNT. As TNT can induce some physiological responses in E. coli, it may be useful to define the sensing elements from E. coli to detect TNT. An E. coli MG1655 genomic promoter library containing nearly 5,400 elements was constructed. Five elements, yadG, yqgC, aspC, recE, and topA, displayed high sensing specificity to TNT and its indicator compounds 1,3-DNB and 2,4-DNT. Based on this, a whole cell biosensor was constructed using E. coli, in which green fluorescent protein was positioned downstream of the five sensing elements via genetic fusion. The threshold value, detection time, EC200 value, and other aspects of five sensing elements were determined and the minimum responding concentration to TNT was 4.75 mg/L. According to the synthetic biology, the five sensing elements enriched the reservoir of TNT-sensing elements, and provided a more applicable toolkit to be applied in genetic routes and live systems of biosensors in future.
Collapse
Affiliation(s)
- Junjie Tan
- Beijing Institute of Biotechnology, Beijing, China
| | - Naipeng Kan
- College of Life Sciences, Anhui University, Hefei, China
| | - Wei Wang
- College of Life Sciences, Jilin University, Changchun, China
| | - Jingyi Ling
- Beijing Institute of Biotechnology, Beijing, China
| | - Guolong Qu
- Beijing Institute of Biotechnology, Beijing, China
| | - Jing Jin
- ShenYang Pharmaceutical University, Shenyang, China
| | - Yu Shao
- College of Life Sciences, Anhui University, Hefei, China
| | - Gang Liu
- Beijing Institute of Biotechnology, Beijing, China.
| | - Huipeng Chen
- Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
24
|
Plotnikova EG, Shumkova ES, Shumkov MS. Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives (Review). APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816040128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Brussaard CPD, Peperzak L, Beggah S, Wick LY, Wuerz B, Weber J, Samuel Arey J, van der Burg B, Jonas A, Huisman J, van der Meer JR. Immediate ecotoxicological effects of short-lived oil spills on marine biota. Nat Commun 2016; 7:11206. [PMID: 27041738 PMCID: PMC4822028 DOI: 10.1038/ncomms11206] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/01/2016] [Indexed: 01/16/2023] Open
Abstract
Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m(3) of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning.
Collapse
Affiliation(s)
- Corina P. D. Brussaard
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Louis Peperzak
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Siham Beggah
- Department of Fundamental Microbiology, Bâtiment Biophore, Quartier UNIL-Sorge, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Lukas Y. Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Birgit Wuerz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Jan Weber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
| | - J. Samuel Arey
- Environmental Chemistry Modeling Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Bart van der Burg
- BioDetection Systems BV, Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Arjen Jonas
- BioDetection Systems BV, Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Johannes Huisman
- Rijkswaterstaat Zee en Delta, Ministerie van Infrastructuur en Milieu, Lange Kleiweg 34, 2288 GK Rijswijk, The Netherlands
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, Bâtiment Biophore, Quartier UNIL-Sorge, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. J Mol Biol 2016; 428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
|
27
|
Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Appl Microbiol Biotechnol 2015; 100:1109-1119. [PMID: 26615397 DOI: 10.1007/s00253-015-7160-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.
Collapse
|
28
|
Sevilla E, Yuste L, Rojo F. Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes. Microb Biotechnol 2015; 8:693-706. [PMID: 25874658 PMCID: PMC4476824 DOI: 10.1111/1751-7915.12286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/14/2015] [Indexed: 11/29/2022] Open
Abstract
Whole-cell biosensors offer potentially useful, cost-effective systems for the in-situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole-cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25-fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3–4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, Madrid, 28049, Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, Madrid, 28049, Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
29
|
Song Y, Jiang B, Tian S, Tang H, Liu Z, Li C, Jia J, Huang WE, Zhang X, Li G. A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 195:178-184. [PMID: 25243386 DOI: 10.1016/j.envpol.2014.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 06/03/2023]
Abstract
A whole-cell bacterial bioreporter Acinetobacter baylyi strain ADP1_recA_lux that responds to genotoxins was employed to directly assess the adverse effects of the bioavailable fraction of mitomycin C (MMC), benzo[a]pyrene (BaP), chromium (VI) and lead (II) in amended soils and soil samples from two fragile areas in China without soil pre-treatment. The amended soils containing pollutants with the concentrations as low as 0.4 mg/kg MMC, 0.5 mg/kg BaP, 520 mg/kg Cr (VI) and 2072 mg/kg Pb (II) were found to be toxic. Soil particle-associated pollutants accounted for 86%, 100%, 29%, and 92% of the genotoxicity in the MMC, BaP, Cr (VI), and Pb (II) amended soil, respectively. The soils from contaminated sites were also valid to be genotoxic. The results suggest both free and soil particle-associated pollutants are bioavailable to soil organisms and a solid-phase contact bioreporter assay to soil contamination could provide a rapid screening tool for environmental risk assessment.
Collapse
Affiliation(s)
- Yizhi Song
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Beijing, 100084, PR China
| | - Bo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Beijing, 100084, PR China
| | - Sicong Tian
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hui Tang
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, PR China
| | - Zengjun Liu
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Beijing, 100084, PR China
| | - Chuan Li
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Beijing, 100084, PR China
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, PR China
| | - Wei E Huang
- Kroto Research Institute, University of Sheffield, Sheffield, S3 7HQ, UK
| | - Xu Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Beijing, 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Beijing, 100084, PR China.
| |
Collapse
|
30
|
Kalogerakis N, Arff J, Banat IM, Broch OJ, Daffonchio D, Edvardsen T, Eguiraun H, Giuliano L, Handå A, López-de-Ipiña K, Marigomez I, Martinez I, Øie G, Rojo F, Skjermo J, Zanaroli G, Fava F. The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment. N Biotechnol 2014; 32:157-67. [PMID: 24747820 DOI: 10.1016/j.nbt.2014.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
In light of the Marine Strategy Framework Directive (MSFD) and the EU Thematic Strategy on the Sustainable Use of Natural Resources, environmental biotechnology could make significant contributions in the exploitation of marine resources and addressing key marine environmental problems. In this paper 14 propositions are presented focusing on (i) the contamination of the marine environment, and more particularly how to optimize the use of biotechnology-related tools and strategies for predicting and monitoring contamination and developing mitigation measures; (ii) the exploitation of the marine biological and genetic resources to progress with the sustainable, eco-compatible use of the maritime space (issues are very diversified and include, for example, waste treatment and recycling, anti-biofouling agents; bio-plastics); (iii) environmental/marine biotechnology as a driver for a sustainable economic growth.
Collapse
|
31
|
Branco R, Morais PV. Identification and characterization of the transcriptional regulator ChrB in the chromate resistance determinant of Ochrobactrum tritici 5bvl1. PLoS One 2013; 8:e77987. [PMID: 24223748 PMCID: PMC3817168 DOI: 10.1371/journal.pone.0077987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/06/2013] [Indexed: 12/30/2022] Open
Abstract
Ochrobactrum tritici 5bvl1 is able to resist to high concentrations of chromate through the expression of an inducible chromate-resistant determinant, found in a mobile element (TnOtChr), which carries the genes, chrB, chrA, chrC and chrF. The regulation of chr operon present in TnOtChr, which is controlled by a transcriptional regulator, ChrB, was characterized in the current work. Fusions of chr promoter, or chr promoter and chrB gene, upstream of a gfp reporter gene, identified the most probable promoter sequence within the tnpR-chrB intergenic region. This region contains an AT-rich imperfect inverted repeat sequence, which overlaps a part of the −10 sequence. The results of the in vitro DNA-binding assays with purified ChrB (His- or no-tagged) showed that the protein binds directly to the chr promoter region. In order to identify the ChrB functional domain for sensing chromate stress and for DNA-binding, site-directed mutagenesis of ChrB was performed. Among several single amino acid mutants, three mutants (R180; R187 and H229) prevented chromate induction without any modification to the protein’s stability. Interestingly, two ChrB mutants (R18 and R23) were constitutively active, regardless of chromate stress conditions, indicating that the residues most probably belong to the protein-DNA binding site. As such, the ChrB was classified as a transcriptional regulator that recognizes a specific DNA sequence, regulating the expression of a chromate resistance determinant.
Collapse
Affiliation(s)
- Rita Branco
- IMAR-CMA-Marine and Environmental Research Centre, Coimbra, Portugal
- Interdisciplinary Research Institute, University of Coimbra, Coimbra, Portugal
| | - Paula V. Morais
- IMAR-CMA-Marine and Environmental Research Centre, Coimbra, Portugal
- Department of Life Sciences, FCTUC, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
32
|
Xu T, Close DM, Sayler GS, Ripp S. Genetically modified whole-cell bioreporters for environmental assessment. ECOLOGICAL INDICATORS 2013; 28:125-141. [PMID: 26594130 PMCID: PMC4649933 DOI: 10.1016/j.ecolind.2012.01.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Living whole-cell bioreporters serve as environmental biosentinels that survey their ecosystems for harmful pollutants and chemical toxicants, and in the process act as human and other higher animal proxies to pre-alert for unfavorable, damaging, or toxic conditions. Endowed with bioluminescent, fluorescent, or colorimetric signaling elements, bioreporters can provide a fast, easily measured link to chemical contaminant presence, bioavailability, and toxicity relative to a living system. Though well tested in the confines of the laboratory, real-world applications of bioreporters are limited. In this review, we will consider bioreporter technologies that have evolved from the laboratory towards true environmental applications, and discuss their merits as well as crucial advancements that still require adoption for more widespread utilization. Although the vast majority of environmental monitoring strategies rely upon bioreporters constructed from bacteria, we will also examine environmental biosensing through the use of less conventional eukaryotic-based bioreporters, whose chemical signaling capacity facilitates a more human-relevant link to toxicity and health-related consequences.
Collapse
Affiliation(s)
- Tingting Xu
- The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA
| | - Dan M. Close
- The Joint Institute for Biological Sciences, Oak Ridge National Laboratory, PO Box 2008, MS6342 Oak Ridge, TN 37831, USA
| | - Gary S. Sayler
- The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA
- The Joint Institute for Biological Sciences, Oak Ridge National Laboratory, PO Box 2008, MS6342 Oak Ridge, TN 37831, USA
| | - Steven Ripp
- The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA
| |
Collapse
|
33
|
Abstract
We investigated on-chip cytotoxicity gas sensing using the bacterial chemotaxis of Euglena confined in a microaquarium. The sensor chip made from PDMS had one microaquarium and two microfluidic channels passing aside of the microaquarium. The chemotactic microbial cells were confined in the microaquarium, whereas two gases (one sample and one reference) flowed in the two isolated microchannels. Gas molecules move from the microchannels into the microaquarium by permeation through porous PDMS wall, and dissolve into the water in the microaquarium, where Euglena cells are swimming. The chemotactic movements of Euglena were observed with an optical microscope and measured as traces in real time. By injecting CO2 and air into each microchannel separately, the Euglena cells in the microaquarium moved to air side, escaping from CO2. This observation showed that the concentration gradient of CO2 was produced in the water in the microaquarium. The CO2-avoiding movement of Euglena was increased largely at a CO2 concentration of 40%, and then moderately increased above 60%. Some Euglena cells stopped swimming at the air side of the microaquarium and remained there even after CO2 has been removed, which can be used as the indicator of CO2 history.
Collapse
|
34
|
Zhang D, Ding A, Cui S, Hu C, Thornton SF, Dou J, Sun Y, Huang WE. Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion. WATER RESEARCH 2013; 47:1191-1200. [PMID: 23269319 DOI: 10.1016/j.watres.2012.11.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/01/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
Abstract
Accidents involving the release of crude oil to seawater pose serious threat to human and animal health, fisheries and marine ecosystems. A whole cell bioreporter detection method, which has unique advantages for the rapid evaluation on toxicity and bioavailability, is a useful tool to provide environmental risk assessments at crude oil-contaminated sites. Acinetobacter baylyi ADPWH_alk and ADPWH_recA are chromosomally-based alkane and genotoxicity bioreporters which can be activated to express bioluminescence in the presence of alkanes and genotoxic compounds. In this study, we applied Acinetobacter ADPWH_alk and ADPWH_recA bioreporters to examine six seawater and six sediment samples around the Dalian Bay four weeks after an oil tank explosion in Dalian, China in 2010, and compared the results with samples from the same sites one year after. The results of bioreporter detection suggest that seawater and sediments from five sites (DB, NT, JSB, XHP and FJZ) four weeks after the oil-spill were contaminated by the crude oil with various extents of genotoxicity. Among these six sites, DB and NT had high oil contents and genotoxicity, and JSB had high oil content but low genotoxicity in comparison with an uncontaminated site LSF, which is located at other side of the peninsula. These three sites (DB, NT and JSB) with detectable genotoxicity are within 30 km away from the oil spill point. The far-away two sites XHP (38.1 km) and FJZ (31.1 km) were lightly contaminated with oil but no genotoxicity suggesting that they are around the contamination boundary. Bioreporter detection also indicates that all six sites were clean one year after the oil-spill as the alkane and genotoxicity were below detection limit. This study demonstrates that bioreporter detection can be used as a rapid method to estimate the scale of a crude oil spill accident and to evaluate bioavailability and genotoxicity of contaminated seawater and sediments, which are crucial to risk assessment and strategic decision-making for environmental management and clean-up.
Collapse
Affiliation(s)
- Dayi Zhang
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Branco R, Cristóvão A, Morais PV. Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PLoS One 2013; 8:e54005. [PMID: 23326558 PMCID: PMC3543429 DOI: 10.1371/journal.pone.0054005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/07/2012] [Indexed: 12/04/2022] Open
Abstract
Microbial bioreporters offer excellent potentialities for the detection of the bioavailable portion of pollutants in contaminated environments, which currently cannot be easily measured. This paper describes the construction and evaluation of two microbial bioreporters designed to detect the bioavailable chromate in contaminated water samples. The developed bioreporters are based on the expression of gfp under the control of the chr promoter and the chrB regulator gene of TnOtChr determinant from Ochrobactrum tritici 5bvl1. pCHRGFP1 Escherichia coli reporter proved to be specific and sensitive, with minimum detectable concentration of 100 nM chromate and did not react with other heavy metals or chemical compounds analysed. In order to have a bioreporter able to be used under different environmental toxics, O. tritici type strain was also engineered to fluoresce in the presence of micromolar levels of chromate and showed to be as specific as the first reporter. Their applicability on environmental samples (spiked Portuguese river water) was also demonstrated using either freshly grown or cryo-preserved cells, a treatment which constitutes an operational advantage. These reporter strains can provide on-demand usability in the field and in a near future may become a powerful tool in identification of chromate-contaminated sites.
Collapse
Affiliation(s)
- Rita Branco
- IMAR, 3004-517 Coimbra, Portugal
- Escola Universitária Vasco da Gama, Mosteiro de S. Jorge de Milréu, Estrada da Conraria, Castelo Viegas – Coimbra, Portugal
| | - Armando Cristóvão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, FCTUC, University of Coimbra, Coimbra, Portugal
| | - Paula V. Morais
- IMAR, 3004-517 Coimbra, Portugal
- Department of Life Sciences, FCTUC, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
36
|
Gireesh-Babu P, Chaudhari A. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Mol Biol Rep 2012; 39:11225-9. [DOI: 10.1007/s11033-012-2033-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022]
|
37
|
Ninomiya K, Yamada R, Matsumoto M, Fukiya S, Katayama T, Ogino C, Shimizu N. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations. J Biosci Bioeng 2012; 115:196-9. [PMID: 23040354 DOI: 10.1016/j.jbiosc.2012.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 01/04/2023]
Abstract
An image analyzing method was developed to evaluate in situ bioluminescence expression, without exposing the culture sample to the ambient oxygen atmosphere. Using this method, we investigated the effect of dissolved oxygen concentration on bioluminescence from an obligate anaerobe Bifidobacterium longum expressing bacterial luciferase which catalyzes an oxygen-requiring bioluminescent reaction.
Collapse
Affiliation(s)
- Kazuaki Ninomiya
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Hong BJ, An Z, Compton OC, Nguyen ST. Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: application to "turn-on" DNA sensing in biological media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2469-76. [PMID: 22696425 PMCID: PMC3639316 DOI: 10.1002/smll.201200264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Indexed: 05/17/2023]
Abstract
As a platform for "turn-on" DNA sensing, the level of oxidation of graphene oxide strongly affects its fluorescence quenching ability and binding interactions to single-stranded oligodeoxyribonucleotides (ssODNs), leading to a broad range of sensitivity. Fine-tuning the level of oxidation of graphene oxide yields a DNA-detection platform that is highly sensitive in serum and biological media.
Collapse
|
39
|
|
40
|
Reed B, Blazeck J, Alper H. Evolution of an alkane-inducible biosensor for increased responsiveness to short-chain alkanes. J Biotechnol 2012; 158:75-9. [PMID: 22326628 DOI: 10.1016/j.jbiotec.2012.01.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 11/28/2022]
Abstract
Synthetic alkane-inducible biosensors have applications as detectors for environmental hydrocarbon contamination and as novel inducible expression systems with low-cost inducers. Here, we have assembled and evolved an alkane-responsive biosensor with a fluorescence output signal in Escherichia coli by utilizing regulatory machinery from Pseudomonas putida's alkane metabolism. Within our system, the transcriptional regulator, AlkSp, is activated by the presence of alkanes and binds to the P(alkB) promoter, stimulating transcription of a Green Fluorescent Protein reporter. Through two successive rounds of directed evolution via error prone PCR and fluorescence activated cell sorting, we isolated alkS mutants enabling up to a 5 fold increase in fluorescence output signal in response to short-chain alkanes such as hexane and pentane. Further characterization of selected mutants demonstrated altered responsiveness to a wide range of linear alkanes (pentane to dodecane). Sequence analysis highlighted the S470T mutation as a likely candidate responsible for increased effectiveness of the AlkS protein for short-chain alkanes. This work represents the first evolution of a synthetic biosensor system for alkanes.
Collapse
Affiliation(s)
- Ben Reed
- Department of Chemical Engineering, The University of Texas at Austin, 1 University Station, C0400, Austin, TX 78712, United States
| | | | | |
Collapse
|
41
|
Kumari R, Tecon R, Beggah S, Rutler R, Arey JS, van der Meer JR. Development of bioreporter assays for the detection of bioavailability of long-chain alkanes based on the marine bacterium Alcanivorax borkumensis strain SK2. Environ Microbiol 2011; 13:2808-19. [PMID: 21895911 DOI: 10.1111/j.1462-2920.2011.02552.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-chain alkanes are a major component of crude oil and therefore potentially good indicators of hydrocarbon spills. Here we present a set of new bacterial bioreporters and assays that allow to detect long-chain alkanes. These reporters are based on the regulatory protein AlkS and the alkB1 promoter from Alcanivorax borkumensis SK2, a widespread alkane degrader in marine habitats. Escherichia coli cells with the reporter construct reacted strongly to octane in short-term (6 h) aqueous suspension assays but very slightly only to tetradecane, in line with what is expected from its low water solubility. In contrast, long-term assays (up to 5 days) with A. borkumensis bioreporters showed strong induction with tetradecane and crude oil. Gel-immobilized A. borkumensis reporter cells were used to demonstrate tetradecane and crude oil bioavailability at a distance from a source. Alcanivorax borkumensis bioreporters induced fivefold more rapid and more strongly when allowed physical contact with the oil phase in standing flask assays, suggesting a major contribution of adhered cells to the overall reporter signal. Using the flask assays we further demonstrated the effect of oleophilic nutrients and biosurfactants on oil availability and degradation by A. borkumensis. The fluorescence signal from flask assays could easily be captured with a normal digital camera, making such tests feasible to be carried out on, e.g. marine oil responder vessels in case of oil accidents.
Collapse
Affiliation(s)
- Rekha Kumari
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Yagur-Kroll S, Bilic B, Belkin S. Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation. Bioeng Bugs 2011; 1:151-3. [PMID: 21326942 DOI: 10.4161/bbug.1.2.11104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 01/04/2010] [Indexed: 11/19/2022] Open
Abstract
Genetically engineered microbial reporter strains are based upon the fusion of an inducible sensing element upstream of a reporting element, so that the construct emits a dose-dependent signal when exposed to the inducing compound(s) or stress factor(s). In this communication we described several general approaches undertaken in order to enhance the sensing performance of such promoter::reporter fusions. Significant improvements in detection sensitivity, response kinetics and signal intensity were achieved by modification of the length of the promoter-containing DNA fragment, by random or site-directed mutagenesis and by promoter duplication. The general nature of these genetics manipulations makes them applicable to other types of promoter::reporter fusions.
Collapse
Affiliation(s)
- Sharon Yagur-Kroll
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
43
|
Shkil H, Schulte A, Guschin DA, Schuhmann W. Electron Transfer between Genetically Modified Hansenula polymorpha Yeast Cells and Electrode Surfaces via Os-complex modified Redox Polymers. Chemphyschem 2011; 12:806-13. [DOI: 10.1002/cphc.201000889] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Indexed: 11/08/2022]
|
44
|
Ben-Yoav H, Melamed S, Freeman A, Shacham-Diamand Y, Belkin S. Whole-cell biochips for bio-sensing: integration of live cells and inanimate surfaces. Crit Rev Biotechnol 2010; 31:337-53. [PMID: 21190513 DOI: 10.3109/07388551.2010.532767] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in the convergence of the biological, chemical, physical, and engineering sciences have opened new avenues of research into the interfacing of diverse biological moieties with inanimate platforms. A main aspect of this field, the integration of live cells with micro-machined platforms for high throughput and bio-sensing applications, is the subject of the present review. These unique hybrid systems are configured in a manner that ensures positioning of the cells in designated patterns, and enables cellular viability maintenance, and monitoring of cellular functionality. Here we review both animate and inanimate surface properties and how they affect cellular attachment, describe relevant modifications of both types of surfaces, list technologies for platform engineering and for cell deposition in the desired configurations, and discuss the influence of various deposition and immobilization methods on the viability and performance of the immobilized cells.
Collapse
Affiliation(s)
- Hadar Ben-Yoav
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Yao J, Schachermeyer S, Yin Y, Zhong W. Cation exchange in ZnSe nanocrystals for signal amplification in bioassays. Anal Chem 2010; 83:402-8. [PMID: 21117624 DOI: 10.1021/ac102688s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ZnSe nanocrystals (NCs), possessing low native luminescence but high biocompatibility, were employed as labeling tags in bioassays. They were able to amplify each target recognition event thousands of times through a cation-exchange reaction (CXAmp) that released over 3000 encapsulated Zn(2+) from one single NC. The freed cations in turn triggered strong fluorescence from the Zn-responsive dyes. The present study demonstrated that CXAmp with ZnSe delivered superior detection performance in comparison to the conventional labeling methods. The overall fluorescence intensity of CXAmp using 5 nM ZnSe NCs was 30 times higher than that from 5 nM core-shell CdSe/ZnS quantum dots (QDs). The limit of detection (LOD) obtained with ZnSe-based CXAmp was 10-fold lower than with horseradish peroxidase (HRP) labeling, and the detection sensitivity, represented by the slope of the signal-versus-concentration curve, was 20-fold higher. When applied to detect immunoglobulin E (IgE) in a sandwich format, a LOD of 1 ng/mL was achieved. The highly sensitive CXAmp also allowed detection of the total IgE content in dilute human serum, in which the abundant matrix proteins exhibited less interference and more accurate quantification could be performed. Besides high signal amplification efficiency and good biocompatibility, CXAmp with ZnSe could be easily adapted to common laboratory settings and act as a universal labeling system for reliable detection of low-abundance targets.
Collapse
Affiliation(s)
- Jingjing Yao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | | | | | | |
Collapse
|
47
|
Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon. Anal Bioanal Chem 2010; 400:1071-82. [DOI: 10.1007/s00216-010-4266-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 11/25/2022]
|
48
|
Woznica A, Nowak A, Karczewski J, Klis C, Bernas T. Automatic biodetector of water toxicity (ABTOW) as a tool for examination of phenol and cyanide contaminated water. CHEMOSPHERE 2010; 81:767-772. [PMID: 20692008 DOI: 10.1016/j.chemosphere.2010.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/05/2010] [Accepted: 07/12/2010] [Indexed: 05/29/2023]
Abstract
We describe an automatic biodetector for continuous monitoring of water toxicity (ABTOW). Construction of the ABTOW is based on natural ability of the biofilm formation to immobilize consortia of nitrifying bacteria (the sensing element) on the open cellular polyurethane foam as the support. Change of rates of oxygen consumption is used as an indicator of biocatalytic activity (nitrification) of the bacteria in response to xenobiotics. Owing to this design the ABTOW features stability long-term use, is inexpensive and simple in operation. The dynamics of ABTOW response is studied in details for phenol and cyanide as model toxins. These data indicate that the sensitivity was 3.5 μM for phenol and 0.19 μM for cyanide, respectively. The magnitudes of toxic effect were proportional to concentration whereas kinetics of the response is an indicator for the mechanism of toxicity. Similar methodology is applied to quantify toxicity of a range of heavy metals, herbicides and oxidative chain inhibitors. One may conclude that the presented biodetector provides a good sensitivity for continuous on-line monitoring of toxicity in water.
Collapse
Affiliation(s)
- Andrzej Woznica
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland.
| | | | | | | | | |
Collapse
|
49
|
Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Curr Microbiol 2010; 62:690-6. [PMID: 20872219 DOI: 10.1007/s00284-010-9764-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
The XylR regulatory protein is a transcriptional activator from the TOL plasmid of Pseudomonas putida mt-2 that is involved in the toluene and benzene degradation pathway. Here we describe the construction and laboratory characterization of recombinant biosensors (pGLPX plasmids) based on XylR and its cognate promoter (Pu). In the pGLPX plasmid, the reporter luc gene is under the control of the Pu promoter. We evaluated the ability of two distinct nucleotide sequences to function as SD elements and improve sensitivity of bioreporting. We also evaluated the effect of introducing the T₂rrnβ terminator on the specificity of the construct. E. coli transformed with pGLPX plasmids were used to sense toluene and its derivatives. The pattern of induction was different for each derivative. In general, more luciferase activity was induced by toluene and benzene than by TNT and DNT at most tested concentrations. The bioluminescence response of the reporter strains to the nitrotoluenes was significantly stronger at lower concentrations (≥ 50 μmol) than at higher concentrations. Our results show that the SD sequence (taaggagg) is crucially important for biosensor sensitivity. The presence of the T₂rrnβ terminator in the bioreporter plasmid prevents nonspecific responses and also reduces biosensor sensitivity upon exposure to inducers. These data suggest that pGLPX strains can be used as whole-cell biosensors to detect toluene and related compounds. Further investigation will be required to optimize the application of pGLPX biosensors.
Collapse
|
50
|
Escherichia coli as a bioreporter in ecotoxicology. Appl Microbiol Biotechnol 2010; 88:1007-25. [PMID: 20803141 DOI: 10.1007/s00253-010-2826-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 01/30/2023]
Abstract
Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future.
Collapse
|