1
|
Maglione G, Zinno P, Tropea A, Mussagy CU, Dufossé L, Giuffrida D, Mondello A. Microbes' role in environmental pollution and remediation: a bioeconomy focus approach. AIMS Microbiol 2024; 10:723-755. [PMID: 39219757 PMCID: PMC11362270 DOI: 10.3934/microbiol.2024033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Bioremediation stands as a promising solution amid the escalating challenges posed by environmental pollution. Over the past 25 years, the influx of synthetic chemicals and hazardous contaminants into ecosystems has required innovative approaches for mitigation and restoration. The resilience of these compounds stems from their non-natural existence, distressing both human and environmental health. Microbes take center stage in this scenario, demonstrating their ability of biodegradation to catalyze environmental remediation. Currently, the scientific community supports a straight connection between biorefinery and bioremediation concepts to encourage circular bio/economy practices. This review aimed to give a pre-overview of the state of the art regarding the main microorganisms employed in bioremediation processes and the different bioremediation approaches applied. Moreover, focus has been given to the implementation of bioremediation as a novel approach to agro-industrial waste management, highlighting how it is possible to reduce environmental pollution while still obtaining value-added products with commercial value, meeting the goals of a circular bioeconomy. The main drawbacks and challenges regarding the feasibility of bioremediation were also reported.
Collapse
Affiliation(s)
- Giuseppe Maglione
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168–Messina, Italy
| | - Cassamo U. Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Laurent Dufossé
- CHEMBIOPRO Laboratoire de Chimie et Biotechnologie des Produits Naturels, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, F-97400 Saint-Denis, Ile de La Réunion, France
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alice Mondello
- Department of Economics, University of Messina, Via dei Verdi, 75, 98122 Messina, Italy
| |
Collapse
|
2
|
Chen J, Wang X, Lv Y, Chen M, Tong H, Liu C. Intelligent monitoring of the available lead (Pb) and cadmium (Cd) in soil samples based on half adder and half subtractor molecular logic gates. Talanta 2024; 271:125681. [PMID: 38244307 DOI: 10.1016/j.talanta.2024.125681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The available heavy metals in soil samples can cause the direct toxicity on ecosystems, plants, and human health. Traditional chemical extraction and recombinant bacterial methods for the available heavy metals assay often suffer from inaccuracy and poor specificity. In this work, we construct half adder and half subtractor molecular logic gates with molecular-level biocomputation capabilities for the intelligent sensing of the available lead (Pb) and cadmium (Cd). The available Pb and Cd can cleave DNAzyme sequences to release the trigger DNA, which can activate the hairpin probe assembly in the logic system. This multifunctional logic system can not only achieve the intelligent recognition of the available Pb and Cd according to the truth tables, but also can realize the simultaneous quantification with high sensitivity, with the detection limits of 2.8 pM and 25.6 pM, respectively. The logic biosensor is robust and has been applied to determination of the available Pb and Cd in soil samples with good accuracy and reliability. The relative error (Re) between the logic biosensor and the DTPA + ICP-MS method was from -8.1 % to 7.9 %. With the advantages of programmability, scalability, and multicomputing capacity, the molecular logic system can provide a simple, rapid, and smart method for intelligent monitoring of the available Pb and Cd in environmental samples.
Collapse
Affiliation(s)
- Junhua Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yiwen Lv
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
3
|
Hu S, Zhang G, Jia X. Improvement of a highly sensitive and specific whole-cell biosensor by adding a positive feedback amplifier. Synth Syst Biotechnol 2023; 8:292-299. [PMID: 37090062 PMCID: PMC10113786 DOI: 10.1016/j.synbio.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, we designed a Cd2+ whole-cell biosensor with both positive and negative feedback cascade amplifiers in Pseudomonas putida KT2440 (LTCM) based on our previous design with only a negative feedback amplifier (TCM). The results showed that the newly developed biosensor LTCM was greatly improved compared to TCM. Firstly, the linear response range of LTCM was expanded while the maximum linear response range was raised from 0.05 to 0.1 μM. Meanwhile, adding a positive feedback amplifier further increased the fluorescence output signal of LTCM 1.11-2.64 times under the same culture conditions. Moreover, the response time of LTCM for detection of practical samples was reduced from 6 to 4 h. At the same time, LTCM still retained very high sensitivity and specificity, while its lowest detection limit was 0.1 nM Cd2+ and the specificity was 23.29 (compared to 0.1 nM and 17.55 in TCM, respectively). In summary, the positive and negative feedback cascade amplifiers effectively improved the performance of the biosensor LTCM, resulting in a greater linear response range, higher output signal intensity, and shorter response time than TCM while retaining comparable sensitivity and specificity, indicating better potential for practical applications.
Collapse
|
4
|
Sharma P, Bano A, Singh SP, Sharma S, Xia C, Nadda AK, Lam SS, Tong YW. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. CHEMOSPHERE 2022; 306:135538. [PMID: 35792210 DOI: 10.1016/j.chemosphere.2022.135538] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have become a major concern to human health and the environment due to rapid industrialization and urbanization. Traditional treatment measures for removing toxic substances from the environment have largely failed, and thus development and advancement in newer remediation techniques are of utmost importance. Rising environmental pollution with HMs and PAHs prompted the research on microbes and the development of genetically engineered microbes (GEMs) for reducing pollution via the bioremediation process. The enzymes produced from a variety of microbes can effectively treat a range of pollutants, but evolutionary trends revealed that various emerging pollutants are resistant to microbial or enzymatic degradation. Naturally, existing microbes can be engineered using various techniques including, gene engineering, directed evolution, protein engineering, media engineering, strain engineering, cell wall modifications, rationale hybrid design, and encapsulation or immobilization process. The immobilization of microbes and enzymes using a variety of nanomaterials, membranes, and supports with high specificity toward the emerging pollutants is also an effective strategy to capture and treat the pollutants. The current review focuses on successful bioremediation techniques and approaches that make use of GEMs or engineered enzymes. Such engineered microbes are more potent than natural strains and have greater degradative capacities, as well as rapid adaptation to various pollutants as substrates or co-metabolizers. The future for the implementation of genetic engineering to produce such organisms for the benefit of the environment andpublic health is indeed long and valuable.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, UP, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Dehua Tubao New Decoration Material Co., Ltd., Huzhou, Zhejiang 313200, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
5
|
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022; 10:1018124. [PMID: 36247665 PMCID: PMC9561917 DOI: 10.3389/fchem.2022.1018124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination has become increasingly a critical global environmental issue that threatens human and ecosystems’ health. Monitoring and risk assessment of toxic pollutants in water bodies is essential to identifying water pollution treatment needs. Compared with the traditional monitoring approaches, environmental biosensing via whole-cell bioreporters (WCBs) has exhibited excellent capabilities for detecting bioavailability of multiple pollutants by providing a fast, simple, versatile and economical way for environmental risk assessment. The performance of WCBs is determined by its elements of construction, such as host strain, regulatory and reporter genes, as well as experimental conditions. Previously, numerous studies have focused on the design and construction of WCB rather than improving the detection process and commercialization of this technology. For investigators working in the environmental field, WCB can be used to detect pollutants is more important than how they are constructed. This work provides a review of the development of WCBs and a brief introduction to genetic construction strategies and aims to summarize key studies on the application of WCB technology in detection of water contaminants, including organic pollutants and heavy metals. In addition, the current status of commercialization of WCBs is highlighted.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mengyuan Jiang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
- *Correspondence: Xiaokai Zhang,
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Mahmoud GAE. Microbial Scavenging of Heavy Metals Using Bioremediation Strategies. RHIZOBIONT IN BIOREMEDIATION OF HAZARDOUS WASTE 2021:265-289. [DOI: 10.1007/978-981-16-0602-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002. Appl Microbiol Biotechnol 2019; 103:2797-2808. [PMID: 30645690 DOI: 10.1007/s00253-018-9490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
Abstract
The anthropogenic release of toxic metals into the environment poses danger to the health of both humans and the local ecosystem. Biosensors for the detection of metals have been developed to improve our ability to monitor these environmental contaminants, yet most of these sensors use heterotrophic bacterial hosts, which require a fixed carbon source and do not typically grow in natural waterways. In this study, we constructed and characterized metal sensors for development of a photoautotrophic biosensor using Synechococcus sp. PCC 7002. We characterized gold and copper sensors based on modified MerR transcriptional activators: GolSA113T, with improved gold binding, and GolSCL, containing the metal-binding loop from CueR which binds both gold and copper. The metal-sensing constructs were first optimized and characterized in Escherichia coli MG1655. The addition of a strong ribosome binding site to the optical reporter protein increased translation of the fluorescent reporter, and expression of golSA113T from the rbc promoter of Synechococcus sp. PCC 7002 improved the response to gold in MG1655. In rich medium, the GolSA113T-based E. coli sensor detected gold at concentrations as low as 100 nM, while the GolSCL-based E. coli sensor detected gold and copper at sensitivities of 100 nM and 10 μM, respectively. Both E. coli sensors responded to gold and copper yet showed no detectable response to other metals. Abiotic factors, such as medium complexity, were found to influence the response of the E. coli sensors, with minimal medium resulting in higher sensitivities of detection. Expression of the GolSA113T- and GolSCL-based sensor constructs in the cyanobacterium Synechococcus sp. PCC 7002 resulted in photoautotrophic gold sensors, but these biosensors failed to produce a significant response to copper. Moreover, the fluorescence response of the cyanobacterial sensors to gold was significantly reduced compared to that of analogous E. coli sensors. While this effort demonstrates feasibility for the development of photoautotrophic biosensors, additional efforts to optimize sensor performance will be required.
Collapse
|
8
|
Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 2018; 21:97-106. [DOI: 10.1007/s10123-018-0012-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/23/2023]
|
9
|
Aga DS, Lenczewski M, Snow D, Muurinen J, Sallach JB, Wallace JS. Challenges in the Measurement of Antibiotics and in Evaluating Their Impacts in Agroecosystems: A Critical Review. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:407-19. [PMID: 27065387 DOI: 10.2134/jeq2015.07.0393] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Large quantities of antibiotics are used in agricultural production, resulting in their release to agroecosystems through numerous pathways, including land application of contaminated manure, runoff from manure-fertilized fields, and wastewater irrigation of croplands. Antibiotics and their transformation products (TPs) exhibit a wide range of physico-chemical and biological properties and thus present substantive analytical challenges. Advances in the measurement of these compounds in various environmental compartments (plants, manure, soil, sediment, and water) have uncovered a previously unrealized landscape of antibiotic residues. These advanced multiresidue methods, designed to measure sub-ng g concentrations in complex mixtures, remain limited by the inherent intricacy of the sample matrices and the difficultly in eliminating interferences that affect antibiotic detection. While efficient extraction methods combined with high sensitivity analysis by liquid chromatography/mass spectrometry can provide accurate quantification of antibiotics and their TPs, measured concentrations do not necessarily reflect their bioavailable fractions and effects in the environment. Consequently, there is a need to complement chemical analysis with biological assays that can provide information on bioavailability, biological activity, and effects of mixtures. Enzyme-linked immunosorbent assays (ELISA), often used as screening tools for antibiotic residues, may be useful for detecting the presence of structurally related antibiotic mixtures but not their effects. Other tools, including bioreporter assays, hold promise in measuring bioavailable antibiotics and could provide insights on their biological activity. Improved assessment of the ecological and human health risks associated with antibiotics in agroecosystems requires continued advances in analytical accuracy and sensitivity through improvements in sample preparation, instrumentation, and screening technologies.
Collapse
|
10
|
Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 236:1-115. [PMID: 26423073 DOI: 10.1007/978-3-319-20013-2_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Though several in-situ treatment methods exist to remediate polluted sites, selecting an appropriate site-specific remediation technology is challenging and is critical for successful clean up of polluted sites. Hence, a comprehensive overview of all the available remediation technologies to date is necessary to choose the right technology for an anticipated pollutant. This review has critically evaluated the (i) technological profile of existing in-situ remediation approaches for priority and emerging pollutants, (ii) recent innovative technologies for on-site pollutant remediation, and (iii) current challenges as well as future prospects for developing innovative approaches to enhance the efficacy of remediation at contaminated sites.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- CERAR-Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, 5095, Australia
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
| | - Thavamani Palanisami
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia.
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Ravi Naidu
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
11
|
Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Appl Microbiol Biotechnol 2015; 100:1109-1119. [PMID: 26615397 DOI: 10.1007/s00253-015-7160-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.
Collapse
|
12
|
An optical biosensor from green fluorescent Escherichia coli for the evaluation of single and combined heavy metal toxicities. SENSORS 2015; 15:12668-81. [PMID: 26029952 PMCID: PMC4507640 DOI: 10.3390/s150612668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/31/2015] [Indexed: 11/17/2022]
Abstract
A fluorescence-based fiber optic toxicity biosensor based on genetically modified Escherichia coli (E. coli) with green fluorescent protein (GFP) was developed for the evaluation of the toxicity of several hazardous heavy metal ions. The toxic metals include Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III). The optimum fluorescence excitation and emission wavelengths of the optical biosensor were 400 ± 2 nm and 485 ± 2 nm, respectively. Based on the toxicity observed under optimal conditions, the detection limits of Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III) that can be detected using the toxicity biosensor were at 0.04, 0.32, 0.46, 2.80, 100, 250, 400, 720 and 2600 μg/L, respectively. The repeatability and reproducibility of the proposed biosensor were 3.5%–4.8% RSD (relative standard deviation) and 3.6%–5.1% RSD (n = 8), respectively. The biosensor response was stable for at least five weeks, and demonstrated higher sensitivity towards metal toxicity evaluation when compared to a conventional Microtox assay.
Collapse
|
13
|
Determination of zinc, cadmium and lead bioavailability in contaminated soils at the single-cell level by a combination of whole-cell biosensors and flow cytometry. SENSORS 2015; 15:8981-99. [PMID: 25894939 PMCID: PMC4431249 DOI: 10.3390/s150408981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/02/2015] [Accepted: 04/10/2015] [Indexed: 11/17/2022]
Abstract
Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pP(ZntA)gfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP) accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pP(ZntA)gfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pP(ZntA)gfp could be used as a monitoring tool for contaminated soils being processed.
Collapse
|
14
|
Bellanger X, Billard P, Schneider R, Balan L, Merlin C. Stability and toxicity of ZnO quantum dots: interplay between nanoparticles and bacteria. JOURNAL OF HAZARDOUS MATERIALS 2015; 283:110-6. [PMID: 25262483 DOI: 10.1016/j.jhazmat.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 05/18/2023]
Abstract
The toxicity of quantum dots (QDs) has been commonly attributed to the release of metal ions from the core as well as to the production of reactive oxygen species. However, the information related to the stability of the nanoparticles are relatively scarce although this parameter may strongly influence their toxicity. The stability of aminosilane-capped ZnO QDs, here used as model nanoparticles, was investigated by inductively coupled plasma-optical emission spectrometer (ICP-OES) and whole cell biosensors using a dialysis setup to separate the QDs from the leaked Zn(2+) ions. The integrity of the ZnO QDs appeared strongly affected by their dilution in aqueous medium, whereas the nanoparticles were slightly stabilized by bacteria. Our results demonstrate some inadequacy between the implementation and use of whole cell biosensors, and the monitoring of metal release from QDs.
Collapse
Affiliation(s)
- Xavier Bellanger
- Université de Lorraine and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, 15 Avenue du Charmois, 54500 Vandœuvre-lès-Nancy, France.
| | - Patrick Billard
- Université de Lorraine and CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Boulevard des Aiguillettes, Faculté des Sciences et Techniques, BP 70239, 54506 Vandœuvre-lès-Nancy, France.
| | - Raphaël Schneider
- Université de Lorraine and CNRS, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France.
| | - Lavinia Balan
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, CNRS, 15 rue Jean Starcky, 68093 Mulhouse, France.
| | - Christophe Merlin
- Université de Lorraine and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, 15 Avenue du Charmois, 54500 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
15
|
Futra D, Heng LY, Surif S, Ahmad A, Ling TL. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. SENSORS (BASEL, SWITZERLAND) 2014; 14:23248-68. [PMID: 25490588 PMCID: PMC4299061 DOI: 10.3390/s141223248] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022]
Abstract
In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.
Collapse
Affiliation(s)
- Dedi Futra
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| | - Lee Yook Heng
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| | - Salmijah Surif
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| | - Asmat Ahmad
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| | - Tan Ling Ling
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), LESTARI, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| |
Collapse
|
16
|
Hynninen A, Virta M. Whole-cell bioreporters for the detection of bioavailable metals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 118:31-63. [PMID: 19543702 DOI: 10.1007/10_2009_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Whole-cell bioreporters are living microorganisms that produce a specific, quantifiable output in response to target chemicals. Typically, whole-cell bioreporters combine a sensor element for the substance of interest and a reporter element coding for an easily detectable protein. The sensor element is responsible for recognizing the presence of an analyte. In the case of metal bioreporters, the sensor element consists of a DNA promoter region for a metal-binding transcription factor fused to a promoterless reporter gene that encodes a signal-producing protein. In this review, we provide an overview of specific whole-cell bioreporters for heavy metals. Because the sensing of metals by bioreporter microorganisms is usually based on heavy metal resistance/homeostasis mechanisms, the basis of these mechanisms will also be discussed. The goal here is not to present a comprehensive summary of individual metal-specific bioreporters that have been constructed, but rather to express views on the theory and applications of metal-specific bioreporters and identify some directions for future research and development.
Collapse
Affiliation(s)
- Anu Hynninen
- Department of Applied Chemistry and Microbiology, University of Helsinki, 56, 00014, Helsinki, Finland
| | | |
Collapse
|
17
|
C De B, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP. Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:921-971. [PMID: 24419543 DOI: 10.1007/s10695-013-9897-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Aquaculture is emerging as one of the most viable and promising enterprises for keeping pace with the surging need for animal protein, providing nutritional and food security to humans, particularly those residing in regions where livestock is relatively scarce. With every step toward intensification of aquaculture practices, there is an increase in the stress level in the animal as well as the environment. Hence, disease outbreak is being increasingly recognized as one of the most important constraints to aquaculture production in many countries, including India. Conventionally, the disease control in aquaculture has relied on the use of chemical compounds and antibiotics. The development of non-antibiotic and environmentally friendly agents is one of the key factors for health management in aquaculture. Consequently, with the emerging need for environmentally friendly aquaculture, the use of alternatives to antibiotic growth promoters in fish nutrition is now widely accepted. In recent years, probiotics have taken center stage and are being used as an unconventional approach that has numerous beneficial effects in fish and shellfish culture: improved activity of gastrointestinal microbiota and enhanced immune status, disease resistance, survival, feed utilization and growth performance. As natural products, probiotics have much potential to increase the efficiency and sustainability of aquaculture production. Therefore, comprehensive research to fully characterize the intestinal microbiota of prominent fish species, mechanisms of action of probiotics and their effects on the intestinal ecosystem, immunity, fish health and performance is reasonable. This review highlights the classifications and applications of probiotics in aquaculture. The review also summarizes the advancement and research highlights of the probiotic status and mode of action, which are of great significance from an ecofriendly, sustainable, intensive aquaculture point of view.
Collapse
Affiliation(s)
- Bidhan C De
- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | | | | | | | | | | |
Collapse
|
18
|
Alhasawi A, Auger C, Appanna VP, Chahma M, Appanna VD. Zinc toxicity and ATP production in Pseudomonas fluorescens. J Appl Microbiol 2014; 117:65-73. [PMID: 24629129 DOI: 10.1111/jam.12497] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/28/2014] [Accepted: 03/08/2014] [Indexed: 01/15/2023]
Abstract
AIMS To identify the molecular networks in Pseudomonas fluorescens that convey resistance to toxic concentrations of Zn, a common pollutant and hazard to biological systems. METHODS AND RESULTS Pseudomonas fluorescens strain ATCC 13525 was cultured in growth medium with millimolar concentrations of Zn. Enzymatic activities and metabolite levels were monitored with the aid of in-gel activity assays and high-performance liquid chromatography, respectively. As oxidative phosphorylation was rendered ineffective, the assimilation of citric acid mediated sequentially by citrate lyase (CL), phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK) appeared to play a key role in ATP synthesis via substrate-level phosphorylation (SLP). Enzymes generating the antioxidant, reduced nicotinamide adenine dinucleotide phosphate (NADPH) were enhanced, while metabolic modules mediating the formation of the pro-oxidant, reduced nicotinamide adenine dinucleotide (NADH) were downregulated. CONCLUSIONS Pseudomonas fluorescens reengineers its metabolic networks to generate ATP via SLP, a stratagem that allows the microbe to compensate for an ineffective electron transport chain provoked by excess Zn. SIGNIFICANCE AND IMPACT OF THE STUDY The molecular insights described here are critical in devising strategies to bioremediate Zn-polluted environments.
Collapse
Affiliation(s)
- A Alhasawi
- Department Chemistry & Biochemistry, Laurentian University, Sudbury, ON, Canada
| | | | | | | | | |
Collapse
|
19
|
Azad MAK, Amin L, Sidik NM. Genetically engineered organisms for bioremediation of pollutants in contaminated sites. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-013-0058-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Xu T, Close DM, Sayler GS, Ripp S. Genetically modified whole-cell bioreporters for environmental assessment. ECOLOGICAL INDICATORS 2013; 28:125-141. [PMID: 26594130 PMCID: PMC4649933 DOI: 10.1016/j.ecolind.2012.01.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Living whole-cell bioreporters serve as environmental biosentinels that survey their ecosystems for harmful pollutants and chemical toxicants, and in the process act as human and other higher animal proxies to pre-alert for unfavorable, damaging, or toxic conditions. Endowed with bioluminescent, fluorescent, or colorimetric signaling elements, bioreporters can provide a fast, easily measured link to chemical contaminant presence, bioavailability, and toxicity relative to a living system. Though well tested in the confines of the laboratory, real-world applications of bioreporters are limited. In this review, we will consider bioreporter technologies that have evolved from the laboratory towards true environmental applications, and discuss their merits as well as crucial advancements that still require adoption for more widespread utilization. Although the vast majority of environmental monitoring strategies rely upon bioreporters constructed from bacteria, we will also examine environmental biosensing through the use of less conventional eukaryotic-based bioreporters, whose chemical signaling capacity facilitates a more human-relevant link to toxicity and health-related consequences.
Collapse
Affiliation(s)
- Tingting Xu
- The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA
| | - Dan M. Close
- The Joint Institute for Biological Sciences, Oak Ridge National Laboratory, PO Box 2008, MS6342 Oak Ridge, TN 37831, USA
| | - Gary S. Sayler
- The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA
- The Joint Institute for Biological Sciences, Oak Ridge National Laboratory, PO Box 2008, MS6342 Oak Ridge, TN 37831, USA
| | - Steven Ripp
- The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA
| |
Collapse
|
21
|
Funes-Huacca M, Wu A, Szepesvari E, Rajendran P, Kwan-Wong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Portable self-contained cultures for phage and bacteria made of paper and tape. LAB ON A CHIP 2012; 12:4269-78. [PMID: 22895550 DOI: 10.1039/c2lc40391a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, we demonstrate that a functional, portable device for the growth of bacteria or amplification of bacteriophage can be created using simple materials. These devices are comprised of packing tape, sheets of paper patterned by hydrophobic printer ink, and a polydimethyl siloxane (PDMS) membrane, which is selectively permeable to oxygen but non-permeable to water. These devices supply bacteria with oxygen and prevent the evaporation of media for a period over 48 h. The division time of E. coli and the amplification of the phage M13 in this device are similar to the rates measured on agar plates and in shaking cultures. The growth of bacteria with a fluorescent mCherry reporter can be quantified using a flatbed scanner or a cell phone camera. Permeating devices with commercial viability dye (PrestoBlue) can be used to detect low copy number of E. coli (1-10 CFU in 100 μL) and visualize microorganisms in environmental samples. The platform, equipped with bacteria that carry inducible mCherry reporter could also be used to quantify the concentration of the inducer (here, arabinose). Identical culture platforms can, potentially, be used to quantify the induction of gene expression by an engineered phage or by synthetic transcriptional regulators that respond to clinically relevant molecules. The majority of measurement and fabrication procedures presented in this report have been replicated by low-skilled personnel (high-school students) in a low-resource environment (high-school classroom). The fabrication and performance of the device have also been tested in a low-resource laboratory setting by researchers in Nairobi, Kenya. Accordingly, this platform can be used as both an educational tool and as a diagnostic tool in low-resource environments worldwide.
Collapse
|
22
|
Blinova I, Bityukova L, Kasemets K, Ivask A, Käkinen A, Kurvet I, Bondarenko O, Kanarbik L, Sihtmäe M, Aruoja V, Schvede H, Kahru A. Environmental hazard of oil shale combustion fly ash. JOURNAL OF HAZARDOUS MATERIALS 2012; 229-230:192-200. [PMID: 22717068 DOI: 10.1016/j.jhazmat.2012.05.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 05/24/2023]
Abstract
The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology.
Collapse
Affiliation(s)
- Irina Blinova
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu P, Huang Q, Chen W. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 164:66-72. [PMID: 22336732 DOI: 10.1016/j.envpol.2012.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 05/31/2023]
Abstract
The inducibility and specificity of different czcRS operons in Pseudomonas putida X4 were studied by lacZ gene fusions. The data of β-glycosidase activity confirmed that the czcR3 promoter responded quantitatively to zinc. A zinc-specific biosensor, P. putida X4 (pczcR3GFP), was constructed by fusing a promoterless enhanced green fluorescent protein (egfp) gene with the czcR3 promoter in the chromosome of P. putida X4. In water extracts of four different soils amended with zinc, the reporter strain detected about 90% of the zinc content of the samples. Both the bioavailability assessment and the sequential extraction analysis demonstrated that the immobilization of zinc was highly dependent on the physico-chemical properties of soils. The results also showed that the lability of zinc decreased over time. It is concluded that the biosensor constitutes an alternative system for the convenient evaluation of zinc toxicity in the environment.
Collapse
Affiliation(s)
- Pulin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
24
|
Identification of a copper-responsive promoter and development of a copper biosensor in the soil bacterium Achromobacter sp. AO22. World J Microbiol Biotechnol 2012; 28:2221-8. [DOI: 10.1007/s11274-012-1029-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
|
25
|
Singh JS, Abhilash P, Singh H, Singh RP, Singh D. Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene 2011; 480:1-9. [DOI: 10.1016/j.gene.2011.03.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
26
|
Escherichia coli as a bioreporter in ecotoxicology. Appl Microbiol Biotechnol 2010; 88:1007-25. [PMID: 20803141 DOI: 10.1007/s00253-010-2826-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 01/30/2023]
Abstract
Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future.
Collapse
|
27
|
Bondarenko O, Rahman PKSM, Rahman TJ, Kahru A, Ivask A. Effects of rhamnolipids from Pseudomonas aeruginosa DS10-129 on luminescent bacteria: toxicity and modulation of cadmium bioavailability. MICROBIAL ECOLOGY 2010; 59:588-600. [PMID: 20082071 DOI: 10.1007/s00248-009-9626-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/28/2009] [Indexed: 05/28/2023]
Abstract
In this study, the mixture of mono- and di-rhamnolipids produced by Pseudomonas aeruginosa DS10-129 was characterized for its toxicity and modulatory effects on Cd availability to different bacteria. Gram-negative naturally bioluminescent Vibrio fischeri and recombinant bioluminescent Pseudomonas fluorescens, P. aeruginosa, Escherichia coli, and Gram-positive Bacillus subtilis were used as model organisms. Rhamnolipids reduced the bioluminescence of these bacteria in less than a second of exposure even in relatively low concentrations (30-min EC(50) 45-167 mg l(-1)). Toxicity of Cd to Gram-negative bacteria (30-min EC(50) values 0.16 mg l(-1) for E. coli, 0.96 mg l(-1) for P. fluorescens, and 4.4 mg l(-1) for V. fischeri) was remarkably (up to 10-fold) reduced in the presence of 50 mg l(-1) rhamnolipids. Interestingly, the toxicity of Cd to Gram-positive B. subtilis (30-min EC(50) value 0.49 mg l(-1)) was not affected by rhamnolipids. Rhamnolipids had an effect on desorption of Cd from soil: 40 mg l(-1) rhamnolipids increased the water-extracted fraction of Cd twice compared with untreated control. However, this additionally desorbed fraction of Cd remained bound with rhamnolipids and was not available to bacteria. Hence, in carefully chosen concentrations (still effectively complexing heavy metals but not yet toxic to soil bacteria), rhamnolipids could be applied in remediation of polluted areas.
Collapse
Affiliation(s)
- Olesja Bondarenko
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | | | | | | |
Collapse
|
28
|
Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. SENSORS 2009; 9:5040-58. [PMID: 22346686 PMCID: PMC3274165 DOI: 10.3390/s90705040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 11/17/2022]
Abstract
In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 μM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 μg/mL or 15 μg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular experimental group. The highest rate was detected in roots treated with 100 μM of Pb-EDTA. To determine heavy metal ions many analytical instruments can be used, however, most of them are only able to quantify total content of the metals. This problem can be overcome using laser induced breakdown spectroscopy, because it is able to provide a high spatial-distribution of metal ions in different types of materials, including plant tissues. Data obtained were used to assemble 3D maps of Pb and Mg distribution. Distribution of these elements is concentrated around main vascular bundle of leaf, which means around midrib.
Collapse
|