1
|
Zhang Y, Whittington CS, Layouni R, Cotto AM, Arnold KP, Halimi SI, Weiss SM. Protein sensing using deep subwavelength-engineered photonic crystals. OPTICS LETTERS 2024; 49:395-398. [PMID: 38194577 DOI: 10.1364/ol.510541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
We demonstrate a higher sensitivity detection of proteins in a photonic crystal platform by including a deep subwavelength feature in the unit cell that locally increases the energy density of light. Through both simulations and experiments, the sensing capability of a deep subwavelength-engineered silicon antislot photonic crystal nanobeam (PhCNB) cavity is compared to that of a traditional PhCNB cavity. The redistribution and local enhancement of the energy density by the 50 nm antislot enable stronger light-molecule interaction at the surface of the antislot and lead to a larger resonance shift upon protein binding. This surface-based energy enhancement is confirmed by experiments demonstrating a nearly 50% larger resonance shift upon attachment of streptavidin molecules to biotin-functionalized antislot PhCNB cavities.
Collapse
|
2
|
Cai Y, Wu K, Ma Z, Zhao S, Zhang Y. Integration of large-extinction-ratio resonators with grating couplers and waveguides on GaN-on-sapphire at O-band. OPTICS EXPRESS 2023; 31:42795-42806. [PMID: 38178390 DOI: 10.1364/oe.504505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Photonic integrated circuits (PICs) based on gallium nitride (GaN) platforms have been widely explored for various applications at C-band (1530 nm∼1565 nm) and visible light wavelength range. However, for O-band (1260 nm∼1360 nm) commonly used in short reach/cost sensitive markets, GaN-based PICs still have not been fully investigated. In this article, a microring resonator with an intrinsic Q-factor of ∼2.67 × 104 and an extinction ratio (ER) of 35.1 dB at 1319.9 nm and 1332.1 nm, is monolithically integrated with a transverse electric-polarized focusing grating coupler and a ridge waveguide on a GaN-on-sapphire platform. This shows a great potential to further exploit the optical properties of GaN materials and integrate GaN-based PICs with the mature GaN active electronic and optoelectronic devices to form a greater platform of optoelectronic-electronic integrated circuits (OEICs) for data-center and telecom applications.
Collapse
|
3
|
Brand O, Wolftson B, Malka D. A Compact Polarization MMI Combiner Using Silicon Slot-Waveguide Structures. MICROMACHINES 2023; 14:1203. [PMID: 37374788 DOI: 10.3390/mi14061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
The study of designing a compact transverse electric (TE)/transverse magnetic (TM) polarization multimode interference (MMI) combiner based on silicon slot-waveguide technology is proposed for solving the high demands for high-speed ability alongside more energy power and minimizing the environmental impact of power consumption, achieving a balance between high-speed performance and energy efficiency has become an important consideration in an optical communication system. The MMI coupler has a significant difference in light coupling (beat-length) for TM and TE at 1550 nm wavelength. By controlling the light propagation mechanism inside the MMI coupler, a lower order of mode can be obtained which can lead to a shorter device. The polarization combiner was solved using the full-vectorial beam propagation method (FV-BPM), and the main geometrical parameters were analyzed using Matlab codes. Results show that after a short light propagation of 16.15 μm, the device can function as TM or TE combiner polarization with an excellent extinction ratio of 10.94 dB for TE mode and 13.08 dB for TM mode with low insertion losses of 0.76 dB (TE) and 0.56 dB (TM) and the combiner function well over the C-band spectrum. The polarization combiner also has a robust MMI coupler length tolerance of 400 nm. These attributes make it a good candidate for using this proposed device in photonic integrated circuits for improving power ability at the transmitter system.
Collapse
Affiliation(s)
- Omer Brand
- Faculty of Engineering Holon, Institute of Technology (HIT), Holon 5810201, Israel
| | - Benjamin Wolftson
- Faculty of Engineering Holon, Institute of Technology (HIT), Holon 5810201, Israel
| | - Dror Malka
- Faculty of Engineering Holon, Institute of Technology (HIT), Holon 5810201, Israel
| |
Collapse
|
4
|
Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives. BIOLOGY 2023; 12:biology12020232. [PMID: 36829508 PMCID: PMC9953566 DOI: 10.3390/biology12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 02/05/2023]
Abstract
Conventional cancer detection and treatment methodologies are based on surgical, chemical and radiational processes, which are expensive, time consuming and painful. Therefore, great interest has been directed toward developing sensitive, inexpensive and rapid techniques for early cancer detection. Optical biosensors have advantages in terms of high sensitivity and being label free with a compact size. In this review paper, the state of the art of optical biosensors for early cancer detection is presented in detail. The basic idea, sensitivity analysis, advantages and limitations of the optical biosensors are discussed. This includes optical biosensors based on plasmonic waveguides, photonic crystal fibers, slot waveguides and metamaterials. Further, the traditional optical methods, such as the colorimetric technique, optical coherence tomography, surface-enhanced Raman spectroscopy and reflectometric interference spectroscopy, are addressed.
Collapse
|
5
|
Kountouris G, Mørk J, Denning EV, Kristensen PT. Modal properties of dielectric bowtie cavities with deep sub-wavelength confinement. OPTICS EXPRESS 2022; 30:40367-40378. [PMID: 36298971 DOI: 10.1364/oe.472793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
We present a design for an optical dielectric bowtie cavity which features deep sub-wavelength confinement of light. The cavity is derived via simplification of a complex geometry identified through inverse design by topology optimization, and it successfully retains the extreme properties of the original structure, including an effective mode volume of Veff = 0.083 ± 0.001 (λc/2nSi)3 at its center. Based on this design, we present a modal analysis to show that the Purcell factor can be well described by a single quasinormal mode in a wide bandwidth of interest. Owing to the small mode volume, moreover, the cavity exhibits a remarkable sensitivity to local shape deformations, which we show to be well described by perturbation theory. The intuitive simplification approach to inverse design geometries coupled with the quasinormal mode analysis demonstrated in this work provides a powerful modeling framework for the emerging field of dielectric cavities with deep sub-wavelength confinement.
Collapse
|
6
|
Ling H, Khurgin JB, Davoyan AR. Atomic-Void van der Waals Channel Waveguides. NANO LETTERS 2022; 22:6254-6261. [PMID: 35867898 DOI: 10.1021/acs.nanolett.2c01819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Layered van der Waals materials allow creating unique atomic-void channels with subnanometer dimensions. Coupling light into these channels may further advance sensing, quantum information, and single molecule chemistries. Here, we examine theoretically limits of light guiding in atomic-void channels and show that van der Waals materials exhibiting strong resonances, excitonic and polaritonic, are ideally suited for deeply subwavelength light guiding. We predict that excitonic transition metal dichalcogenides can squeeze >70% of optical power in just <λ/100 thick channel in the visible and near-infrared. We also show that polariton resonances of hexagonal boron nitride allow deeply subwavelength (<λ/500) guiding in the mid-infrared. We further reveal effects of natural material anisotropy and discuss the influence of losses. Such van der Waals channel waveguides while offering extreme optical confinement exhibit significantly lower loss compared to plasmonic counterparts, thus paving the way to low-loss and deeply subwavelength optics.
Collapse
Affiliation(s)
- Haonan Ling
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| | - Jacob B Khurgin
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Artur R Davoyan
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
O-Band Multimode Interference Coupler Power Combiner Using Slot-Waveguide Structures. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Photonic transmitters that operate with a high data transfer rate (over 150 Gb/s) at the O-band range (1260–1360 nm) require at least 100 milliwatts of power to overcome the power losses that are caused by using high-speed modulators. A laser with higher power can probably handle this requirement; however, for the transmitter system, this solution can be problematic due to the nonlinear effects that can happen, which may lead to high noise in the transmitter system. Thus, to solve this issue, we propose a new design of a 2 × 1 multimode interference (MMI) power combiner using silicon nitride (SiN) slot waveguide structures. The MMI power combiner and the SiN slot waveguide structures were optimized using the full-vectorial beam propagation method (FV-BPM) and the finite difference time domain (FDTD) method. After combining two sources, high efficiency was obtained of 94.8–97.6% from the total power after a short coupling length of 109.81 µm over the O-band range with a low back reflection of 44.94 dB. Thus, the proposed device can be very useful for combining two O-band sources to gain a higher power level, which can be utilized to improve performances in transmitter systems.
Collapse
|
8
|
Zhang H, Lv X, Huang B, Cheng C, Zhang Z, Zhang Z, Fang W, Zhang H, Chen R, Huang Y, Chen H. In Situ Regeneration of Silicon Microring Biosensors Coated with Parylene C. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:504-513. [PMID: 34965120 DOI: 10.1021/acs.langmuir.1c02914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical biosensors support disease diagnostic applications, offering high accuracy and sensitivity due to label-free detection and their optical resonance enhancement. However, optical biosensors based on noble metal nanoparticles and precise micro-electromechanical system technology are costly, which is an obstacle for their applications. Here, we proposed a biosensor reuse method with nanoscale parylene C film, taking the silicon-on-insulator microring resonator biosensor as an example. Parylene C can efficiently adsorb antibody by one-step modification without any surface treatment, which simplifies the antibody modification process of sensors. Parylene C (20 nm thick) was successfully coated on the surface of the microring to modify anti-carcinoembryonic antigen (anti-CEA) and specifically detect CEA. After sensing, parylene C was successfully removed without damaging the sensing surface for the sensor reusing. The experimental results demonstrate that the sensing response did not change significantly after the sensor was reused more than five times, which verifies the repeatability and reliability of the reusable method by using parylene C. This framework can potentially reduce the cost of biosensors and promote their further applications.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory on Integrated Optoelelctronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Lv
- State Key Laboratory on Integrated Optoelelctronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beiju Huang
- State Key Laboratory on Integrated Optoelelctronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Chuantong Cheng
- State Key Laboratory on Integrated Optoelelctronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zan Zhang
- School of Electronic and Control Engineering, Chang'an University, Xi'an 710064, China
| | - Zanyun Zhang
- School of Electronical and Electronic Engineering, Tiangong University, Tianjin 300387, China
| | - Weihao Fang
- State Key Laboratory on Integrated Optoelelctronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengjie Zhang
- State Key Laboratory on Integrated Optoelelctronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Chen
- State Key Laboratory on Integrated Optoelelctronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Huang
- State Key Laboratory on Integrated Optoelelctronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Chen
- State Key Laboratory on Integrated Optoelelctronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| |
Collapse
|
9
|
Lin KJ, Wang LA. Investigation of an In-Line Slot Waveguide Sensor Built in a Tapered D-Shaped Silicon-Cored Fiber. SENSORS (BASEL, SWITZERLAND) 2021; 21:7832. [PMID: 34883836 PMCID: PMC8659571 DOI: 10.3390/s21237832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
An in-line slot waveguide sensor built in a polished flat platform of a D-shaped silicon cored fiber with a taper coupled region is proposed and investigated thoroughly. Simulation results show that the single-mode light field sustained in the silicon cored fiber can be efficiently transferred to the slot waveguides through the tapered region. The geometry parameters of the slot waveguide sensors are optimized to have the corresponding highest power confinement factors and the resultant sensor sensitivities. The three-slot waveguide sensor is found to have the best performance among one-, two- and three-slot waveguides at the mid-IR wavelength.
Collapse
Affiliation(s)
| | - Lon A. Wang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan;
| |
Collapse
|
10
|
Asghari A, Wang C, Yoo KM, Rostamian A, Xu X, Shin JD, Dalir H, Chen RT. Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges. APPLIED PHYSICS REVIEWS 2021; 8:031313. [PMID: 34552683 PMCID: PMC8427516 DOI: 10.1063/5.0022211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 05/21/2021] [Indexed: 05/14/2023]
Abstract
The sudden rise of the worldwide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in early 2020 has called into drastic action measures to perform instant detection and reduce the rate of spread. Common clinical and nonclinical diagnostic testing methods have been partially effective in satisfying the increasing demand for fast detection point-of-care (POC) methods to slow down further spread. However, accurate point-of-risk diagnosis of this emerging viral infection is paramount as the need for simultaneous standard operating procedures and symptom management of SARS-CoV-2 will be the norm for years to come. A sensitive, cost-effective biosensor with mass production capability is crucial until a universal vaccination becomes available. Optical biosensors can provide a noninvasive, extremely sensitive rapid detection platform with sensitivity down to ∼67 fg/ml (1 fM) concentration in a few minutes. These biosensors can be manufactured on a mass scale (millions) to detect the COVID-19 viral load in nasal, saliva, urine, and serological samples, even if the infected person is asymptotic. Methods investigated here are the most advanced available platforms for biosensing optical devices that have resulted from the integration of state-of-the-art designs and materials. These approaches include, but are not limited to, integrated optical devices, plasmonic resonance, and emerging nanomaterial biosensors. The lab-on-chip platforms examined here are suitable not only for SARS-CoV-2 spike protein detection but also for other contagious virions such as influenza and Middle East respiratory syndrome (MERS).
Collapse
Affiliation(s)
- Aref Asghari
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Chao Wang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Kyoung Min Yoo
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Ali Rostamian
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Xiaochuan Xu
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Jong-Dug Shin
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Hamed Dalir
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Ray T. Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
11
|
Pushkarev AV, Orlov AV, Znoyko SL, Bragina VA, Nikitin PI. Rapid and Easy-to-Use Method for Accurate Characterization of Target Binding and Kinetics of Magnetic Particle Bioconjugates for Biosensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:2802. [PMID: 33921145 PMCID: PMC8071512 DOI: 10.3390/s21082802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
The ever-increasing use of magnetic particle bioconjugates (MPB) in biosensors calls for methods of comprehensive characterization of their interaction with targets. Label-free optical sensors commonly used for studying inter-molecular interactions have limited potential for MPB because of their large size and multi-component non-transparent structure. We present an easy-to-use method that requires only three 20-min express measurements to determine the key parameters for selection of optimal MPB for a biosensor: kinetic and equilibrium characteristics, and a fraction of biomolecules on the MPB surface that are capable of active targeting. The method also provides a prognostic dependence of MPB targeting efficiency upon interaction duration and sample volume. These features are possible due to joining a magnetic lateral flow assay, a highly sensitive sensor for MPB detection by the magnetic particle quantification technique, and a novel mathematical model that explicitly describes the MPB-target interactions and does not comprise parameters to be fitted additionally. The method was demonstrated by experiments on MPB targeting of cardiac troponin I and staphylococcal enterotoxin B. The validation by an independent label-free technique of spectral-correlation interferometry showed good correlation between the results obtained by both methods. The presented method can be applied to other targets for faster development and selection of MPB for affinity sensors, analytical technologies, and realization of novel concepts of MPB-based biosensing in vivo.
Collapse
Affiliation(s)
- Averyan V. Pushkarev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
- Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700 Moscow Region, Russia
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Vera A. Bragina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| |
Collapse
|
12
|
Ioudashkin E, Malka D. A Three Demultiplexer C-Band Using Angled Multimode Interference in GaN-SiO 2 Slot Waveguide Structures. NANOMATERIALS 2020; 10:nano10122338. [PMID: 33255679 PMCID: PMC7761371 DOI: 10.3390/nano10122338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022]
Abstract
One of the most common techniques for increasing data bitrate using the telecommunication system is to use dense wavelength division multiplexing (DWDM). However, the implementation of DWDM with more channels requires additional waveguide coupler devices and greater energy consumption, which can limit the system performances. To solve these issues, we propose a new approach for designing the demultiplexer using angled multimode interference (AMMI) in gallium nitride (GaN)–silica (SiO2) slot waveguide structures. SiO2 and GaN materials are selected for confining the infrared light inside the GaN areas under the transverse electric (TE) field mode. The results show that, after 3.56 mm light propagation, three infrared wavelengths in the C-band can be demultiplexed using a single AMMI coupler with a power loss of 1.31 to 2.44 dB, large bandwidth of 12 to 13.69 nm, very low power back reflection of 47.64 to 48.76 dB, and crosstalk of −12.67 to −15.62 dB. Thus, the proposed design has the potential for improving performances in the telecommunication system that works with DWDM technology.
Collapse
|
13
|
Fluorescent Bulk Waveguide Sensor in Porous Glass: Concept, Fabrication, and Testing. NANOMATERIALS 2020; 10:nano10112169. [PMID: 33143236 PMCID: PMC7692051 DOI: 10.3390/nano10112169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
In this work, we suggest the new concept of sensing elements—bulk waveguides (BWGs) fabricated by the laser direct writing technique inside porous glass (PG). BWGs in nanoporous materials are promising to be applied in the photonics and sensors industries. Such light-guiding components interrogate the internal conditions of nanoporous materials and are able to detect chemical or physical reactions occurring inside nanopores especially with small molecules, which represent a separate class for sensing technologies. After the writing step, PG plates are impregnated with the indicator—rhodamine 6G—which penetrates through the nanoporous framework to the BWG cladding. The experimental investigation proved the concept by measuring the spectral characteristics of an output signal. We have demonstrated that the BWG is sensitive to ethanol molecules captured by the nanoporous framework. The sensitivity of the peak shift in the fluorescence spectrum to the refractive index of the solution is quantified as 6250 ± 150 nm/RIU.
Collapse
|
14
|
Butt MA, Khonina SN, Kazanskiy NL. Ultrashort inverted tapered silicon ridge-to-slot waveguide coupler at 1.55 µm and 3.392 µm wavelength. APPLIED OPTICS 2020; 59:7821-7828. [PMID: 32976452 DOI: 10.1364/ao.398550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Herein, a compact and efficient inverted tapered ridge-to-slot waveguide coupler design based on the silicon-on-insulator platform is presented. The proposed device consists of three segments such as ridge waveguide, inverted taper segment, and slot waveguide. The coupling segment resembles a V shape, which provides good mode-matching between the ridge and slot waveguide. Two significant aspects of the proposed coupler design are discussed. In the first part of the paper, the coupler design optimized at 1.55 µm is suggested for optical interconnect. The propagation loss and coupling efficiency of 1.69 dB/µm and 91% are obtained for the 100 nm long tapered segment introduced between the ridge waveguide and slot waveguide, respectively. This propagation loss of the device includes the loss suffered by the ridge waveguide, tapered segment, and slot waveguide. Our proposed device design can be used in integrated optical platforms, where the efficient coupling of light to slot waveguides is required. Whereas, in the second part, the coupler design is optimized at the mid-infrared of 3.392 µm for an evanescent field absorption methane gas sensor. Slot waveguide offers excessive light-matter interaction due to its strong mode confinement in the low index material. The evanescent field ratio of ∼0.73 is obtained for the optimized waveguide geometry. As a result, 3 dB decay in the transmitted power can be obtained at 60% of gas concentration present in the ambient medium.
Collapse
|
15
|
Kazanskiy NL, Khonina SN, Butt MA. Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3416. [PMID: 32560484 PMCID: PMC7349533 DOI: 10.3390/s20123416] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/15/2023]
Abstract
In this paper, a racetrack ring resonator design based on a subwavelength grating double slot waveguide is presented. The proposed waveguide scheme is capable of confining the transverse electric field in the slots and the gaps between the grating segments. This configuration facilitates a large light-matter interaction which elevates the sensitivity of the device approximately 2.5 times higher than the one that can be obtained via a standard slot waveguide resonator. The best sensitivity of the design is obtained at 1000 nm/RIU by utilizing a subwavelength grating double slot waveguide of period 300 nm. The numerical study is conducted via 2D and 3D finite element methods. We believe that the proposed sensor design can play an important role in the realization of highly sensitive lab-on-chip sensors.
Collapse
Affiliation(s)
- Nikolay Lvovich Kazanskiy
- Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia; (N.L.K.); (S.N.K.)
- Institute of RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443086 Samara, Russia
| | - Svetlana Nikolaevna Khonina
- Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia; (N.L.K.); (S.N.K.)
- Institute of RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443086 Samara, Russia
| | - Muhammad Ali Butt
- Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia; (N.L.K.); (S.N.K.)
| |
Collapse
|
16
|
Ponce-Alcántara S, Martínez-Pérez P, Pérez-Márquez A, Maudes J, Murillo N, García-Rupérez J. Stabilization of Polymeric Nanofibers Layers for Use as Real-Time and In-Flow Photonic Sensors. SENSORS 2019; 19:s19183847. [PMID: 31489881 PMCID: PMC6767253 DOI: 10.3390/s19183847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
In order to increase the sensitivity of a sensor, the relationship between its volume and the surface available to be functionalized is of great importance. Accordingly, porous materials are becoming very relevant, because they have a notable surface-to-volume ratio. Moreover, they offer the possibility to infiltrate the target substances on them. Among other porous structures, polymeric nanofibers (NFs) layers fabricated by electrospinning have emerged as a very promising alternative to low-cost and easy-to-produce high-performance photonic sensors. However, experimental results show a spectrum drift when performing sensing measurements in real-time. That drift is responsible for a significant error when trying to determine the refractive index variation for a target solution, and, because of that, for the detection of the presence of certain analytes. In order to avoid that problem, different chemical and thermal treatments were studied. The best results were obtained for thermal steps at 190 °C during times between 3 and 5 h. As a result, spectrum drifts lower than 5 pm/min and sensitivities of 518 nm/refractive index unit (RIU) in the visible range of the spectrum were achieved in different electrospun NFs sensors.
Collapse
Affiliation(s)
- Salvador Ponce-Alcántara
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Paula Martínez-Pérez
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Ana Pérez-Márquez
- TECNALIA Research & Innovation, Mikeletegi Pasealekua, 2, 20009 Donostia-San Sebastián, Spain.
| | - Jon Maudes
- TECNALIA Research & Innovation, Mikeletegi Pasealekua, 2, 20009 Donostia-San Sebastián, Spain.
| | - Nieves Murillo
- TECNALIA Research & Innovation, Mikeletegi Pasealekua, 2, 20009 Donostia-San Sebastián, Spain.
| | - Jaime García-Rupérez
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
17
|
Shakoor A, Grant J, Grande M, Cumming DRS. Towards Portable Nanophotonic Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1715. [PMID: 30974832 PMCID: PMC6479635 DOI: 10.3390/s19071715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/02/2023]
Abstract
A range of nanophotonic sensors composed of different materials and device configurations have been developed over the past two decades. These sensors have achieved high performance in terms of sensitivity and detection limit. The size of onchip nanophotonic sensors is also small and they are regarded as a strong candidate to provide the next generation sensors for a range of applications including chemical and biosensing for point-of-care diagnostics. However, the apparatus used to perform measurements of nanophotonic sensor chips is bulky, expensive and requires experts to operate them. Thus, although integrated nanophotonic sensors have shown high performance and are compact themselves their practical applications are limited by the lack of a compact readout system required for their measurements. To achieve the aim of using nanophotonic sensors in daily life it is important to develop nanophotonic sensors which are not only themselves small, but their readout system is also portable, compact and easy to operate. Recognizing the need to develop compact readout systems for onchip nanophotonic sensors, different groups around the globe have started to put efforts in this direction. This review article discusses different works carried out to develop integrated nanophotonic sensors with compact readout systems, which are divided into two categories; onchip nanophotonic sensors with monolithically integrated readout and onchip nanophotonic sensors with separate but compact readout systems.
Collapse
Affiliation(s)
- Abdul Shakoor
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK.
| | - James Grant
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Marco Grande
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, 70125 Bari, Italy.
| | | |
Collapse
|
18
|
Iqbal A, Smida A, Saraereh OA, Alsafasfeh QH, Mallat NK, Lee BM. Cylindrical Dielectric Resonator Antenna-Based Sensors for Liquid Chemical Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1200. [PMID: 30857265 PMCID: PMC6427509 DOI: 10.3390/s19051200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
A compact, cylindrical dielectric resonator antenna (CDRA), using radio frequency signals to identify different liquids is proposed in this paper. The proposed CDRA sensor is excited by a rectangular slot through a 3-mm-wide microstrip line. The rectangular slot has been used to excite the CDRA for H E M 11 mode at 5.25 GHz. Circuit model values (capacitance, inductance, resistance and transformer ratios) of the proposed CDRA are derived to show the true behaviour of the system. The proposed CDRA acts as a sensor due to the fact that different liquids have different dielectric permittivities and, hence, will be having different resonance frequencies. Two different types of CDRA sensors are designed and experimentally validated with four different liquids (Isopropyl, ethanol, methanol and water).
Collapse
Affiliation(s)
- Amjad Iqbal
- Centre for Wireless Technology (CWT), Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia.
| | - Amor Smida
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, 11952 AlMajmaah, Saudi Arabia.
- Unit of Research in High Frequency Electronic Circuits and Systems, Faculty of Mathematical, Physical and Natural Sciences of Tunis, Tunis El Manar University, Tunis 2092, Tunisia.
| | - Omar A Saraereh
- Department of Electrical Engineering, Hashemite University, Zarqa 13115, Jordan.
| | - Qais H Alsafasfeh
- Department of Electrical Power and Mechatronics Engineering, Tafila Technical University, Tafila 11183, Jordan.
| | - Nazih Khaddaj Mallat
- College of Engineering, Al Ain University of Science and Technology, Al Ain 64141, United Arab Emirates (UAE).
| | - Byung Moo Lee
- School of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
19
|
Luan E, Shoman H, Ratner DM, Cheung KC, Chrostowski L. Silicon Photonic Biosensors Using Label-Free Detection. SENSORS 2018; 18:s18103519. [PMID: 30340405 PMCID: PMC6210424 DOI: 10.3390/s18103519] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/24/2022]
Abstract
Thanks to advanced semiconductor microfabrication technology, chip-scale integration and miniaturization of lab-on-a-chip components, silicon-based optical biosensors have made significant progress for the purpose of point-of-care diagnosis. In this review, we provide an overview of the state-of-the-art in evanescent field biosensing technologies including interferometer, microcavity, photonic crystal, and Bragg grating waveguide-based sensors. Their sensing mechanisms and sensor performances, as well as real biomarkers for label-free detection, are exhibited and compared. We also review the development of chip-level integration for lab-on-a-chip photonic sensing platforms, which consist of the optical sensing device, flow delivery system, optical input and readout equipment. At last, some advanced system-level complementary metal-oxide semiconductor (CMOS) chip packaging examples are presented, indicating the commercialization potential for the low cost, high yield, portable biosensing platform leveraging CMOS processes.
Collapse
Affiliation(s)
- Enxiao Luan
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Hossam Shoman
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Daniel M Ratner
- Department of Bioengineering, University of Washington, 3720 15th Ave. NE, Seattle, WA 98195-5061, USA.
| | - Karen C Cheung
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Lukas Chrostowski
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
20
|
Ahmad A, Dubey V, Singh VR, Tinguely JC, Øie CI, Wolfson DL, Mehta DS, So PTC, Ahluwalia BS. Quantitative phase microscopy of red blood cells during planar trapping and propulsion. LAB ON A CHIP 2018; 18:3025-3036. [PMID: 30132501 PMCID: PMC6161620 DOI: 10.1039/c8lc00356d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 05/12/2023]
Abstract
Red blood cells (RBCs) have the ability to undergo morphological deformations during microcirculation, such as changes in surface area, volume and sphericity. Optical waveguide trapping is suitable for trapping, propelling and deforming large cell populations along the length of the waveguide. Bright field microscopy employed with waveguide trapping does not provide quantitative information about structural changes. Here, we have combined quantitative phase microscopy and waveguide trapping techniques to study changes in RBC morphology during planar trapping and transportation. By using interference microscopy, time-lapsed interferometric images of trapped RBCs were recorded in real-time and subsequently utilized to reconstruct optical phase maps. Quantification of the phase differences before and after trapping enabled study of the mechanical effects during planar trapping. During planar trapping, a decrease in the maximum phase values, an increase in the surface area and a decrease in the volume and sphericity of RBCs were observed. QPM was used to analyze the phase values for two specific regions within RBCs: the annular rim and the central donut. The phase value of the annular rim decreases whereas it increases for the central donut during planar trapping. These changes correspond to a redistribution of cytosol inside the RBC during planar trapping and transportation.
Collapse
Affiliation(s)
- Azeem Ahmad
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
- Department of Physics
, Indian Institute of Technology Delhi
,
New Delhi 110016
, India
| | - Vishesh Dubey
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
- Department of Physics
, Indian Institute of Technology Delhi
,
New Delhi 110016
, India
| | - Vijay Raj Singh
- Department of Mechanical & Biological Engineering
, Massachusetts Institute of Technology
,
Cambridge
, MA
02139
, USA
- BioSym IRG
, Singapore-Alliance for Science & Technology Center
,
Singapore
, Singapore
| | - Jean-Claude Tinguely
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| | - Cristina Ionica Øie
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| | - Deanna L. Wolfson
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| | - Dalip Singh Mehta
- Department of Physics
, Indian Institute of Technology Delhi
,
New Delhi 110016
, India
| | - Peter T. C. So
- Department of Mechanical & Biological Engineering
, Massachusetts Institute of Technology
,
Cambridge
, MA
02139
, USA
- BioSym IRG
, Singapore-Alliance for Science & Technology Center
,
Singapore
, Singapore
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| |
Collapse
|
21
|
Bera A, Kuittinen M, Honkanen S, Roussey M. Silicon slot waveguide Fano resonator. OPTICS LETTERS 2018; 43:3489-3492. [PMID: 30067692 DOI: 10.1364/ol.43.003489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
The growing interest for Fano resonators during the past decade is due to the narrow line shape observable in their optical spectra. The drastic phase shift occurring at the resonance yields a steep drop from a high to low amplitude. Fano resonances can be obtained by a combination of nanostructures. Such a system is extremely sensitive in terms of both geometrical parameters and environmental conditions. Here we study a complex arrangement of photonic crystal cavities and slot waveguides on a silicon chip. Our structure, composed of several cavities in parallel, has a particular response superimposing a shallow photonic bandgap and a resonance with a Fano line shape. It provides a low noise and a clear asymmetric resonance. We demonstrate it experimentally and show the potential of such a device for sensing. A sensitivity of 92 nm/RIU is measured.
Collapse
|
22
|
Label-Free Monitoring of Human IgG/Anti-IgG Recognition Using Bloch Surface Waves on 1D Photonic Crystals. BIOSENSORS-BASEL 2018; 8:bios8030071. [PMID: 30044392 PMCID: PMC6163225 DOI: 10.3390/bios8030071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Optical biosensors based on one-dimensional photonic crystals sustaining Bloch surface waves are proposed to study antibody interactions and perform affinity studies. The presented approach utilizes two types of different antibodies anchored at the sensitive area of a photonic crystal-based biosensor. Such a strategy allows for creating two or more on-chip regions with different biochemical features as well as studying the binding kinetics of biomolecules in real time. In particular, the proposed detection system shows an estimated limit of detection for the target antibody (anti-human IgG) smaller than 0.19 nM (28 ng/mL), corresponding to a minimum surface mass coverage of 10.3 ng/cm². Moreover, from the binding curves we successfully derived the equilibrium association and dissociation constants (KA = 7.5 × 10⁷ M-1; KD = 13.26 nM) of the human IgG⁻anti-human IgG interaction.
Collapse
|
23
|
Ahmadi L, Hiltunen M, Hiltunen J, Aikio S, Saarinen J, Honkanen S, Roussey M. Influence of an Al 2O 3 surface coating on the response of polymeric waveguide sensors. OPTICS EXPRESS 2017; 25:25102-25112. [PMID: 29041182 DOI: 10.1364/oe.25.025102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
The responses of a polymer ridge waveguide Young interferometer with and without a bilayer of Al2O3/TiO2, fabricated by atomic layer deposition, are studied and compared when applied as an aqueous chemical sensor. The phase shift of the guided mode, as a result of the change in refractive index of the cover medium, is monitored. The results indicate that the over-coating affects the linearity of the sensor response. The effect of concentration on the linearity of the sensor response is investigated by applying different concentrations of water-ethanol solution. Although the performance of the sensor is improved by the additional layers, the study reveals a non-monotonic behavior of the device. We show that it comes mainly from the adsorption of ethanol molecules on the surface of the films. Such an understanding of the platform is crucial for sensing of analytes involving polar molecules.
Collapse
|
24
|
Visser D, Choudhury BD, Krasovska I, Anand S. Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays. OPTICS EXPRESS 2017; 25:12171-12181. [PMID: 28786575 DOI: 10.1364/oe.25.012171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Si nanopillar (NP) arrays are investigated as refractive index sensors in the visible/NIR wavelength range, suitable for Si photodetector responsivity. The NP arrays are fabricated by nanoimprint lithography and dry etching, and coated with thin dielectric layers. The reflectivity peaks obtained by finite-difference time-domain (FDTD) simulations show a linear shift with coating layer thickness. At 730 nm wavelength, sensitivities of ~0.3 and ~0.9 nm/nm of SiO2 and Si3N4, respectively, are obtained; and the optical thicknesses of the deposited surface coatings are determined by comparing the experimental and simulated data. The results show that NP arrays can be used for sensing surface bio-layers. The proposed method could be useful to determine the optical thickness of surface coatings, conformal and non-conformal, in NP-based optical devices.
Collapse
|
25
|
Huang L, Yan H, Xu X, Chakravarty S, Tang N, Tian H, Chen RT. Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators. OPTICS EXPRESS 2017; 25:10527-10535. [PMID: 28468425 PMCID: PMC5462069 DOI: 10.1364/oe.25.010527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 05/23/2023]
Abstract
Compared to the conventional strip waveguide microring resonators, subwavelength grating (SWG) waveguide microring resonators have better sensitivity and lower detection limit due to the enhanced photon-analyte interaction. As sensors, especially biosensors, are usually used in absorptive ambient environment, it is very challenging to further improve the detection limit of the SWG ring resonator by simply increasing the sensitivity. The high sensitivity resulted from larger mode-analyte overlap also brings significant absorption loss, which deteriorates the quality factor of the resonator. To explore the potential of the SWG ring resonator, we theoretically and experimentally optimize an ultrasensitive transverse magnetic mode SWG racetrack resonator to obtain maximum quality factor and thus lowest detection limit. A quality factor of 9800 around 1550 nm and sensitivity of 429.7 ± 0.4nm/RIU in water environment are achieved. It corresponds to a detection limit (λ/S·Q) of 3.71 × 10-4 RIU, which marks a reduction of 32.5% compared to the best value reported for SWG microring sensors.
Collapse
Affiliation(s)
- Lijun Huang
- State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876,
China
- Dept. of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78758,
USA
| | - Hai Yan
- Dept. of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78758,
USA
| | - Xiaochuan Xu
- Omega Optics Inc., 8500 Shoal Creek Blvd., Austin, TX, 78759,
USA
| | | | - Naimei Tang
- Omega Optics Inc., 8500 Shoal Creek Blvd., Austin, TX, 78759,
USA
| | - Huiping Tian
- State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876,
China
| | - Ray T. Chen
- Dept. of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78758,
USA
- Omega Optics Inc., 8500 Shoal Creek Blvd., Austin, TX, 78759,
USA
| |
Collapse
|
26
|
Li K, Feng X, Cui K, Zhang W, Liu F, Huang Y. Integrated refractive index sensor using silicon slot waveguides. APPLIED OPTICS 2017; 56:3096-3103. [PMID: 28414367 DOI: 10.1364/ao.56.003096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose an integrated refractive index (RI) sensor based on evanescent field absorption (EFA) within a silicon slot waveguide, where the RI variation is translated into a varied attenuation coefficient and eventually the output power at the end of the waveguide. To demonstrate the operating principle of such a RI-EFA sensor, a specific structure is designed and discussed with numerical simulations. The calculated results indicate that the detection limit of our proposed RI-EFA sensor could be as good as ∼10-8 RIU for homogeneous sensing and ∼10-7 RIU for surface sensing with optimized structural parameters at a wavelength of 1064 nm. Since only a straight slot waveguide and optical power detection are required for our proposed sensor, we believe that it is promising to achieve an integrated and portable sensor on a single chip.
Collapse
|
27
|
Zhu B, Ren G, Gao Y, Li H, Wu B, Jian S. Strong light confinement and gradient force in a hexagonal boron nitride slot waveguide. OPTICS LETTERS 2016; 41:4991-4994. [PMID: 27805667 DOI: 10.1364/ol.41.004991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this Letter, we show that a hexagonal boron nitride (h-BN) slot waveguide can achieve strong field enhancement and light confinement in a slot region and a giant gradient force between h-BN slabs. Excellent agreement between simulations and results from an analytical model is observed. In a two-dimensional case, a field enhancement ratio near 60, a power confinement ratio of 80%, and a gradient force over -8.5 nN/μm×mW have been achieved, which are much higher than the slot waveguide based on artificial hyperbolic metamaterials. The gradient force and power confinement ratio in a three-dimensional slot waveguide structure are also studied. A gradient force of -1.2 nN/mW and a power confinement ratio of 50% have been obtained. The h-BN slot waveguide may have potential in particle manipulation.
Collapse
|
28
|
Memon MU, Lim S. Microwave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity [corrected]. SENSORS 2016; 16:s16111829. [PMID: 27809240 PMCID: PMC5134488 DOI: 10.3390/s16111829] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 11/21/2022]
Abstract
This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure.
Collapse
Affiliation(s)
- Muhammad Usman Memon
- School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea.
| | - Sungjoon Lim
- School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea.
| |
Collapse
|
29
|
Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch Toxicol 2016; 91:109-130. [DOI: 10.1007/s00204-016-1875-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023]
|
30
|
|
31
|
Ma T, Sun L, Yuan J, Sang X, Yan B, Wang K, Yu C. Integrated label-free optical biochemical sensor with a large measurement range based on an angular grating-microring resonator. APPLIED OPTICS 2016; 55:4784-4790. [PMID: 27409100 DOI: 10.1364/ao.55.004784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose and design a photonic-integrated optical biochemical sensor, which comprises a microring resonator and angular gratings in a silicon-on-insulator waveguide. With the combination of the angular gratings, the measurement range of the angular grating-microring resonator-based sensor significantly increases without the restriction of a free spectral range. Optimization of the several key structural parameters is investigated to achieve favorable transmission properties. A high-quality factor of more than 1.03×105 can meet the requirements of high sensitivity and low detection limit. The simulation results on the biochemical bulk sensing show that a concentration sensitivity of more than 95.27 pm/% and detection limit of less than 0.329% can be obtained. A large measurement range of 50.2 nm is achieved by the combination of the angular gratings. The investigation on the combination of microring resonator and angular grating is a valuable exploration of the liquid and gas biomedical sensing for the ultra-large measurement range.
Collapse
|
32
|
Testa G, Persichetti G, Bernini R. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors. MICROMACHINES 2016; 7:mi7030047. [PMID: 30407419 PMCID: PMC6190334 DOI: 10.3390/mi7030047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
In this paper, we introduce a liquid core antiresonant reflecting optical waveguide (ARROW) as a novel optofluidic device that can be used to create innovative and highly functional microsensors. Liquid core ARROWs, with their dual ability to guide the light and the fluids in the same microchannel, have shown great potential as an optofluidic tool for quantitative spectroscopic analysis. ARROWs feature a planar architecture and, hence, are particularly attractive for chip scale integrated system. Step by step, several improvements have been made in recent years towards the implementation of these waveguides in a complete on-chip system for highly-sensitive detection down to the single molecule level. We review applications of liquid ARROWs for fluids sensing and discuss recent results and trends in the developments and applications of liquid ARROW in biomedical and biochemical research. The results outlined show that the strong light matter interaction occurring in the optofluidic channel of an ARROW and the versatility offered by the fabrication methods makes these waveguides a very promising building block for optofluidic sensor development.
Collapse
Affiliation(s)
- Genni Testa
- Istituto per il Rilevamento Elettromagnetico dell'Ambiente, Consiglio Nazionale delle Ricerche (IREA-CNR), Via Diocleziano 328, 80124 Naples, Italy.
| | - Gianluca Persichetti
- Istituto per il Rilevamento Elettromagnetico dell'Ambiente, Consiglio Nazionale delle Ricerche (IREA-CNR), Via Diocleziano 328, 80124 Naples, Italy.
| | - Romeo Bernini
- Istituto per il Rilevamento Elettromagnetico dell'Ambiente, Consiglio Nazionale delle Ricerche (IREA-CNR), Via Diocleziano 328, 80124 Naples, Italy.
| |
Collapse
|
33
|
Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders. Adv Drug Deliv Rev 2015; 95:90-103. [PMID: 26408791 DOI: 10.1016/j.addr.2015.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/17/2015] [Accepted: 09/10/2015] [Indexed: 01/31/2023]
Abstract
Systemic inflammatory disorders resulting from infection, trauma, surgery, and severe disease conditions pose serious threats to human health leading to organ dysfunction, organ failure, and mortality. The highly complex and dynamic nature of the immune system experiencing acute inflammation makes immunomodulatory therapy blocking pro-inflammatory cytokines very challenging. Successful therapy requires the ability to determine appropriate anti-cytokine drugs to be delivered at a right dose in a timely manner. Label-free micro- and nano-biosensors hold the potential to overcome the current challenges, enabling cytokine-targeted treatments to be tailored according to the immune status of an individual host with their unique cytokine biomarker detection capabilities. This review studies the recent progress in label-free cytokine biosensors, summarizes their performances and potential merits, and discusses future directions for their advancements to meet challenges towards personalized anti-cytokine drug delivery.
Collapse
|
34
|
Ma P, Choi DY, Yu Y, Yang Z, Vu K, Nguyen T, Mitchell A, Luther-Davies B, Madden S. High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing. OPTICS EXPRESS 2015; 23:19969-79. [PMID: 26367656 DOI: 10.1364/oe.23.019969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report the characteristics of high Q factor chalcogenide ring resonators designed for sensing in the mid-infrared (MIR). The resonators consisted of an exposed Ge11.5As24Se64.5 core on a Ge11.5As24S64.5 bottom cladding and were fabricated in the racetrack coupled ring structure. Loaded Q factors at 5.2μm up to 58,000were obtained, corresponding to an intrinsic Q of 145,000 and a waveguide propagation loss of 0.84dB/cm.
Collapse
|
35
|
Bera A, Häyrinen M, Kuittinen M, Honkanen S, Roussey M. Parabolic opening in atomic layer deposited TiO(2) nanobeam operating in visible wavelengths. OPTICS EXPRESS 2015; 23:14973-14980. [PMID: 26072853 DOI: 10.1364/oe.23.014973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate the feasibility of developing a one dimensional photonic crystal cavity on a TiO2 platform operating in the visible. The atomic layer deposition technique is used to finely adjust the parameters of the structure. We present the experimental demonstration of a nanobeam cavity with a quadratically tapered row of holes, in which a parabolic window is opened in order to facilitate the infiltration of gas, liquid, nonlinear material, or quantum emitters. The structure exhibits a photonic band gap between λ = 635 nm and λ = 690 nm and several resonances within the photonic band gap.
Collapse
|
36
|
|
37
|
Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W. Progress of new label-free techniques for biosensors: a review. Crit Rev Biotechnol 2015; 36:465-81. [DOI: 10.3109/07388551.2014.991270] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Khodadad I, Clarke N, Khorasaninejad M, Henneke D, Saini SS. Optimization of multiple-slot waveguides for biochemical sensing. APPLIED OPTICS 2014; 53:5169-5178. [PMID: 25320926 DOI: 10.1364/ao.53.005169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/07/2014] [Indexed: 06/04/2023]
Abstract
In this work, we analyze and optimize an optical biochemical sensor using silicon multiple-slot waveguides. The rigorous optimization procedure considers parameters such as ridge width, slot width, the number of slots, and the effect of residual silicon left at the bottom of the slot region. These parameters are then optimized using a figure of merit to achieve the highest possible sensitivity to bulk and surface changes in the upper cladding of the sensor. The multiple-slot structure is then studied in a bend configuration in order to construct ring-resonator-based sensors. A bulk sensitivity of 912 nm/refractive index unit is achieved for a change in bulk refractive index, which is three times better than single-slot waveguides.
Collapse
|
39
|
Ahmadi L, Tervo J, Saarinen J, Honkanen S. Enhanced sensitivity in polymer slot waveguides by atomic layer deposited bilayer coatings. APPLIED OPTICS 2013; 52:8089-8094. [PMID: 24513762 DOI: 10.1364/ao.52.008089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 06/03/2023]
Abstract
The refractive index sensitivity of a polymer slot waveguide coated with a bilayer of Al₂O₃/TiO₂ was investigated theoretically and optimized for biosensor applications. The influence of atomic-layer-deposition-coated thin high-refractive-index layers on the slot confinement factor and the homogeneous sensitivity of polymer slot waveguides with different geometries were simulated. The results were compared with those of an optimized noncoated polymer slot waveguide, both operating at visible wavelengths. The simulations reveal that the proposed structure offers a significant improvement in the confinement factor and the sensitivity. These calculations present guidelines for the design and fabrication of relatively sensitive polymer slot waveguide devices for low-cost biochemical sensor applications.
Collapse
|
40
|
The analysis of time-resolved optical waveguide absorption spectroscopy based on positive matrix factorization. J Colloid Interface Sci 2013; 403:134-41. [DOI: 10.1016/j.jcis.2013.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/25/2013] [Indexed: 02/07/2023]
|
41
|
Liu Q, Kee JS, Park MK. A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide. OPTICS EXPRESS 2013; 21:5897-5909. [PMID: 23482158 DOI: 10.1364/oe.21.005897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, we present a design of a refractive index sensor based on grating-assisted light coupling between a strip waveguide and a slot waveguide. The slot waveguide serves as the sensing waveguide while the strip waveguide is used for light launching and detection. The wavelength at which the light is coupled from the strip waveguide to the slot waveguide serves as a measure of the refractive index of the external medium. The sensitivity of the sensor is ~1.46 × 10(3) nm/RIU (refractive index unit) and can be almost doubled by isolating the strip waveguide from the external medium. The effects of the slot-waveguide parameters on the sensitivity have also been investigated. In particular, it is found that the sensor can achieve extraordinarily high sensitivity (on the order of 10(5) nm/RIU) when the group indices of two waveguides are close. The temperature dependence of the sensor is also investigated and a sensor with very low temperature dependence can be achieved with a polymer isolation layer.
Collapse
Affiliation(s)
- Qing Liu
- Institute of Microelectronics, Agency for Science, Technology and Research, 11 Science Park Road, Singapore Science Park II, 117685
| | | | | |
Collapse
|
42
|
Passaro VMN, Troia B, Notte ML, Leonardis FD. Photonic resonant microcavities for chemical and biochemical sensing. RSC Adv 2013. [DOI: 10.1039/c2ra21984k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
43
|
Vollmer F, Yang L. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. NANOPHOTONICS 2012; 1:267-291. [PMID: 26918228 PMCID: PMC4764104 DOI: 10.1515/nanoph-2012-0021] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Optical microcavities that confine light in high-Q resonance promise all of the capabilities required for a successful next-generation microsystem biodetection technology. Label-free detection down to single molecules as well as operation in aqueous environments can be integrated cost-effectively on microchips, together with other photonic components, as well as electronic ones. We provide a comprehensive review of the sensing mechanisms utilized in this emerging field, their physics, engineering and material science aspects, and their application to nanoparticle analysis and biomolecular detection. We survey the most recent developments such as the use of mode splitting for self-referenced measurements, plasmonic nanoantennas for signal enhancements, the use of optical force for nanoparticle manipulation as well as the design of active devices for ultra-sensitive detection. Furthermore, we provide an outlook on the exciting capabilities of functionalized high-Q microcavities in the life sciences.
Collapse
Affiliation(s)
- Frank Vollmer
- Max Planck Institute for the Science of Light, Laboratory of Nanophotonics and Biosensing, G. Scharowsky Str. 1, 91058 Erlangen, Germany
| | - Lan Yang
- Electrical and Systems Engineering Department, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
44
|
Hiltunen M, Hiltunen J, Stenberg P, Petäjä J, Heinonen E, Vahimaa P, Karioja P. Polymeric slot waveguide at visible wavelength. OPTICS LETTERS 2012; 37:4449-4451. [PMID: 23114325 DOI: 10.1364/ol.37.004449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polymeric slot waveguide structure, which pushes the mode field toward the surrounding media, was designed and characterized. The slot waveguide was fabricated by using nanoimprint lithography, and the operation of the slot was demonstrated at 633 nm wavelength with an integrated Young interferometer. The experimental result shows that the nanolithography method provides possibilities to fabricate disposable slot waveguide sensors.
Collapse
|
45
|
Chakravarty S, Zou Y, Lai WC, Chen RT. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon. Biosens Bioelectron 2012; 38:170-6. [PMID: 22748964 PMCID: PMC3432291 DOI: 10.1016/j.bios.2012.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/27/2012] [Accepted: 05/15/2012] [Indexed: 11/16/2022]
Abstract
Current trends in photonic crystal microcavity biosensors in silicon-on-insulator (SOI), that focus on small and smaller sensors have faced a bottleneck trying to balance two contradictory requirements of resonance quality factor and sensitivity. By simultaneous control of the radiation loss and optical mode volumes, we show that both requirements can be satisfied simultaneously. Microcavity sensors are designed in which resonances show highest Q ≈ 9300 in the bio-ambient phosphate buffered saline (PBS) as well as highest sensitivity among photonic crystal biosensors. We experimentally demonstrated mass sensitivity 8.8 atto-grams with sensitivity per unit area of 0.8 pg/mm(2). Highest sensitivity, irrespective of the dissociation constant K(d), is demonstrated among all existing label-free optical biosensors in silicon at the concentration of 0.1 μg/ml.
Collapse
Affiliation(s)
| | - Yi Zou
- Department of Electrical and Computer Engineering, University of Texas at Austin, 10100 Burnet Road, Bldg 160, Austin, TX, 78758
| | - Wei-Cheng Lai
- Department of Electrical and Computer Engineering, University of Texas at Austin, 10100 Burnet Road, Bldg 160, Austin, TX, 78758
| | - Ray T. Chen
- Department of Electrical and Computer Engineering, University of Texas at Austin, 10100 Burnet Road, Bldg 160, Austin, TX, 78758
- Omega Optics Inc., 10306 Sausalito Drive, Austin, TX, 78759
| |
Collapse
|
46
|
Chen YF, Jiang L, Mancuso M, Jain A, Oncescu V, Erickson D. Optofluidic opportunities in global health, food, water and energy. NANOSCALE 2012; 4:4839-57. [PMID: 22763418 DOI: 10.1039/c2nr30859b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Optofluidics is a rapidly advancing field that utilizes the integration of optics and microfluidics to provide a number of novel functionalities in microsystems. In this review, we discuss how this approach can potentially be applied to address some of the greatest challenges facing both the developing and developed world, including healthcare, food shortages, malnutrition, water purification, and energy. While medical diagnostics has received most of the attention to date, here we show that some other areas can also potentially benefit from optofluidic technology. Whenever possible we briefly describe how microsystems are currently used to address these problems and then explain why and how optofluidics can provide better solutions. The focus of the article is on the applications of optofluidic techniques in low-resource settings, but we also emphasize that some of these techniques, such as those related to food production, food safety assessment, nutrition monitoring, and energy production, could be very useful in well-developed areas as well.
Collapse
Affiliation(s)
- Yih-Fan Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | | | | | | | | | | |
Collapse
|
47
|
Optimizing SOI slot waveguide fabrication tolerances and strip-slot coupling for very efficient optical sensing. SENSORS 2012; 12:2436-55. [PMID: 22736959 PMCID: PMC3376618 DOI: 10.3390/s120302436] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/09/2012] [Accepted: 02/20/2012] [Indexed: 11/18/2022]
Abstract
Slot waveguides are becoming more and more attractive optical components, especially for chemical and bio-chemical sensing. In this paper an accurate analysis of slot waveguide fabrication tolerances is carried out, in order to find optimum design criteria for either homogeneous or absorption sensing mechanisms, in cases of low and high aspect ratio slot waveguides. In particular, we have focused on Silicon On Insulator (SOI) technology, representing the most popular technology for this kind of devices, simultaneously achieving high integration capabilities, small dimensions and low cost. An accurate analysis of single mode behavior for high aspect ratio slot waveguide has been also performed, in order to provide geometric limits for waveguide design purposes. Finally, the problem of coupling into a slot waveguide is addressed and a very compact and efficient slot coupler is proposed, whose geometry has been optimized to give a strip-slot-strip coupling efficiency close to 100%.
Collapse
|
48
|
Mancuso M, Goddard JM, Erickson D. Nanoporous polymer ring resonators for biosensing. OPTICS EXPRESS 2012; 20:245-55. [PMID: 22274347 PMCID: PMC3495877 DOI: 10.1364/oe.20.000245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/06/2011] [Accepted: 10/26/2011] [Indexed: 05/22/2023]
Abstract
Optically resonant devices are promising as label-free biomolecular sensors due to their ability to concentrate electromagnetic energy into small mode volumes and their capacity for multiplexed detection. A fundamental limitation of current optical biosensor technology is that the biomolecular interactions are limited to the surface of the resonant device, while the highest intensity of electromagnetic energy is trapped within the core. In this paper, we present nanoporous polymer optofluidic devices consisting of ring resonators coupled to bus waveguides. We report a 40% increase in polymer device sensitivity attributed to the addition of core energy- bioanalyte interactions.
Collapse
Affiliation(s)
- Matthew Mancuso
- Department of Biomedical Engineering, Cornell University, Ithaca NY, 14850,
USA
| | - Julie M. Goddard
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003,
USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY, 14850,
USA
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY, 14850,
USA
| |
Collapse
|
49
|
Scullion M, Di Falco A, Krauss T. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosens Bioelectron 2011; 27:101-5. [DOI: 10.1016/j.bios.2011.06.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 11/25/2022]
|