1
|
Wongwanakul R, Aueviriyavit S, Furihata T, Gonil P, Sajomsang W, Maniratanachote R, Jianmongkol S. Quaternization of high molecular weight chitosan for increasing intestinal drug absorption using Caco-2 cells as an in vitro intestinal model. Sci Rep 2023; 13:7904. [PMID: 37193745 DOI: 10.1038/s41598-023-34888-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
Potential use of a quaternized chitosan (MW 600 kDa) with 65% of 3-chloro-2-hydroxypropyltrimethylammonium (600-HPTChC65) as an absorptive enhancer was investigated in Caco-2 monolayers. 600-HPTChC65 (0.005% w/v) quickly reduced transepithelial electrical resistance (TEER) to the maximum level in 40 min with full recovery within 6 h after removal. Its TEER reduction was corresponded to increased FD4 transport across the monolayers and disrupted localization of tight junction proteins ZO-1 and occludin at the cell borders. 600-HPTChC65 was densely localized at the membrane surface and intercellular junctions. This chitosan (0.08-0.32% w/v) reduced the efflux ratio of [3H]-digoxin by 1.7- 2 folds, suggesting an increased [3H]-digoxin transport across the monolayers. Its binding with P-gp on Caco-2 monolayer increased the signal of fluorescence-labeled anti-P-gp (UIC2) reactivity due to conformational change. 600-HPTChC65 (0.32% w/v) had no effect on P-gp expression in the Caco-2 monolayers. These results suggest that 600-HPTChC65 could enhance drug absorption through tight junction opening and decreased P-gp function. Its interaction with the absorptive barrier mainly resulted in disrupting ZO-1 and occludin organization as well as changing in P-gp conformation.
Collapse
Affiliation(s)
- Ratjika Wongwanakul
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Pattarapond Gonil
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Warayuth Sajomsang
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Rawiwan Maniratanachote
- Toxicology and Bio Evaluation Service Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Development of Physiologically Based Pharmacokinetic Model for Orally Administered Fexuprazan in Humans. Pharmaceutics 2021; 13:pharmaceutics13060813. [PMID: 34072547 PMCID: PMC8229463 DOI: 10.3390/pharmaceutics13060813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Fexuprazan is a new drug candidate in the potassium-competitive acid blocker (P-CAB) family. As proton pump inhibitors (PPIs), P-CABs inhibit gastric acid secretion and can be used to treat gastric acid-related disorders such as gastroesophageal reflux disease (GERD). Physiologically based pharmacokinetic (PBPK) models predict drug interactions as pharmacokinetic profiles in biological matrices can be mechanistically simulated. Here, we propose an optimized and validated PBPK model for fexuprazan by integrating in vitro, in vivo, and in silico data. The extent of fexuprazan tissue distribution in humans was predicted using tissue-to-plasma partition coefficients in rats and the allometric relationships of fexuprazan distribution volumes (VSS) among preclinical species. Urinary fexuprazan excretion was minimal (0.29-2.02%), and this drug was eliminated primarily by the liver and metabolite formation. The fraction absorbed (Fa) of 0.761, estimated from the PBPK modeling, was consistent with the physicochemical properties of fexuprazan, including its in vitro solubility and permeability. The predicted oral bioavailability of fexuprazan (38.4-38.6%) was within the range of the preclinical datasets. The Cmax, AUClast, and time-concentration profiles predicted by the PBPK model established by the learning set were accurately predicted for the validation sets.
Collapse
|
3
|
Chmayssem A, Verplanck N, Tanase CE, Costa G, Monsalve-Grijalba K, Amigues S, Alias M, Gougis M, Mourier V, Vignoud S, Ghaemmaghami AM, Mailley P. Development of a multiparametric (bio)sensing platform for continuous monitoring of stress metabolites. Talanta 2021; 229:122275. [PMID: 33838777 DOI: 10.1016/j.talanta.2021.122275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
There is a growing need for real-time monitoring of metabolic products that could reflect cell damages over extended periods. In this paper, we report the design and development of an original multiparametric (bio)sensing platform that is tailored for the real-time monitoring of cell metabolites derived from cell cultures. Most attractive features of our developed electrochemical (bio)sensing platform are its easy manufacturing process, that enables seamless scale-up, modular and versatile approach, and low cost. In addition, the developed platform allows a multiparametric analysis instead of single-analyte analysis. Here we provide an overview of the sensors-based analysis of four main factors that can indicate a possible cell deterioration problem during cell-culture: pH, hydrogen peroxide, nitric oxide/nitrite and lactate. Herein, we are proposing a sensors platform based on thick-film coupled to microfluidic technology that can be integrated into any microfluidic system using Luer-lock connectors. This platform allows obtaining an accurate analysis of the secreting stress metabolites during cell/tissues culture.
Collapse
Affiliation(s)
- Ayman Chmayssem
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France.
| | - Nicolas Verplanck
- Univ. Grenoble Alpes, CEA, LETI, DTBS, LSMB, 38000, Grenoble, France
| | - Constantin Edi Tanase
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom
| | - Guillaume Costa
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | | | - Simon Amigues
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Mélanie Alias
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Maxime Gougis
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Véronique Mourier
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Séverine Vignoud
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Amir M Ghaemmaghami
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France.
| |
Collapse
|
4
|
Zyryanov SK, Butranova OI, Gaidai DS, Kryshen KL. [Pharmacotherapy for acute respiratory infections caused by influenza viruses: current possibilities]. TERAPEVT ARKH 2021; 93:114-124. [PMID: 33720636 DOI: 10.26442/00403660.2021.01.200551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023]
Abstract
Routinely the influenza virus significantly contributes to the formation of the annual incidence of acute respiratory infections, with a peak in winter season. The high level of mutagenic potential of influenza viruses is a standard factor determining the complexity of the rational choice of pharmacotherapy. The upcoming epidemiological season 20202021 brings additional challenges for health care practitioners mediated by the widespread prevalence in the human population of a new infection caused by the SARS-CoV-2 virus affecting the respiratory system among many organs and systems. An adequate choice of pharmacotherapy tools should be based on high efficiency and safety of drugs, with a possible reduction in such negative factors as polypharmacy. This review includes comparative pharmacological characteristics of drugs with activity against RNA viruses, along with parameters of their clinical efficacy.
Collapse
Affiliation(s)
- S K Zyryanov
- People's Friendship University of Russia.,City Clinical Hospital №24
| | | | | | | |
Collapse
|
5
|
Zarubaev VV, Slita AV, Sinegubova EO, Muryleva AA, Lavrentieva IN. [Anti-viral activity of enisamium iodide against viruses of influenza and ARVI's on different cell lines]. TERAPEVT ARKH 2020; 92:45-50. [PMID: 33720603 DOI: 10.26442/00403660.2020.11.000872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 11/22/2022]
Abstract
Influenza and ARVI represent the most numerous and dangerous group of causative agents of respiratory infections human. AIM Characterization of the antiviral properties of enisamium iodide against human respiratory viruses in in vitro experiments. MATERIALS AND METHODS In the course of experiments, the cytotoxic properties of enisamium iodide were studied against the cell lines Vero, MA-104, A549, L-41 and HEp-2. The antiviral activity of enisamium iodide was studied using virus yield reduction assay against influenza viruses, parainfluenza virus, respiratory syncytial virus, Coxsackie B3 and Coxsackie B4 viruses, as well as adenoviruses types 5 and 6. RESULTS The most sensitive to the action of enisamium iodide was the human parainfluenza virus, whose activity decreased by 2.3 orders of magnitude under the action of the drug in A549 cells. Of the cell cultures used, enisamium iodide exhibited the maximum antiviral effect in human lung carcinoma cells A549, where, in its presence, the level of reproduction of adenoviruses of types 5 and 6, Coxsackie viruses B3 and B4, and human parainfluenza virus decreased by an order of magnitude or more. The antiviral activity of enisamium iodide was least manifested in Vero cells. CONCLUSION According to the results of in vitro experiments, enisamium iodide can be considered as an antiviral drug with a wide spectrum of activity against human respiratory viruses.
Collapse
|