1
|
Garg U, Dua T, Kaul S, Jain N, Pandey M, Nagaich U. Enhancing periodontal defences with nanofiber treatment: recent advances and future prospects. J Drug Target 2024; 32:470-484. [PMID: 38404239 DOI: 10.1080/1061186x.2024.2321372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
The term periodontal disease is used to define diseases characterised by inflammation and regeneration of the gums, cementum, supporting bone, and periodontal ligament. The conventional treatment involves the combination of scaling, root planning, and surgical approaches which are invasive and can pose certain challenges. Intrapocket administration of nanofibers can be used for overcoming challenges which can help in speeding up the wound repair process and can also be used to promote osteogenesis. To help make drug delivery more effective, nanofibers are an interesting solution. Nanofibers are nanosized 3D structures that can fill the pockets and have excellent mucoadhesion which prolongs their retention time on the target site. Moreover, their structure mimics the natural extracellular matrix which enables nanomaterials to sense local biological conditions and start cellular-level reprogramming to produce the necessary therapeutic efficacy. In this review, the significance of intrapocket administration of nanofibers using recent research for the management of periodontitis has been discussed in detail. Furthermore, we have discussed polymers used for the preparation of nanofibers, nanofiber production methods, and the patents associated with these developments. This comprehensive compilation of data serves as a valuable resource, consolidating recent developments in nanofiber applications for periodontitis management into one accessible platform.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Tanya Dua
- Department of Periodontology, Inderprastha Dental College and Hospital, Atal Bihari Vajpayee Medical University, Lucknow, UP, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| |
Collapse
|
2
|
Radu CM, Radu CC, Arbănaşi EM, Hogea T, Murvai VR, Chiș IA, Zaha DC. Exploring the Efficacy of Novel Therapeutic Strategies for Periodontitis: A Literature Review. Life (Basel) 2024; 14:468. [PMID: 38672739 PMCID: PMC11050937 DOI: 10.3390/life14040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Periodontitis, a prevalent oral condition, is facing difficulties in therapeutic approaches, sometimes leading to failure. This literature review was conducted to investigate the diversity of other therapeutic approaches and their potential contributions to the successful management of the disease. This research scrutinized the alterations in microbial diversity and imbalances in crucial microbial species, which contribute significantly to the pathogenesis of periodontitis. Within the limitations of this study, we highlight the importance of understanding the treatment plan's role in periodontitis disease, opening the way for further research and innovative treatment plans to mitigate the impact of periodontitis on oral health. This will aid both healthcare professionals and patients in preventing and effectively treating periodontitis, ultimately improving oral health outcomes and overall systemic health and well-being.
Collapse
Affiliation(s)
- Casandra-Maria Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
| | - Carmen Corina Radu
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
- Institute of Forensic Medicine, 540141 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Emil-Marian Arbănaşi
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Vascular Surgery, Mureș County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
| | - Timur Hogea
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
- Institute of Forensic Medicine, 540141 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Viorela Romina Murvai
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| | - Ioana-Andreea Chiș
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
| | - Dana Carmen Zaha
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| |
Collapse
|
3
|
Jain P, Mirza MA, Reyaz E, Beg MA, Selvapandiyan A, Hasan N, Naqvi A, Punnoth Poonkuzhi N, Kuruniyan MS, Yadav HN, Ahmad FJ, Iqbal Z. QbD-Assisted Development and Optimization of Doxycycline Hyclate- and Hydroxyapatite-Loaded Nanoparticles for Periodontal Delivery. ACS OMEGA 2024; 9:4455-4465. [PMID: 38313517 PMCID: PMC10831838 DOI: 10.1021/acsomega.3c07092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
The current research aims to develop a carrier system for the delivery of a matrix metalloproteinase (MMP) inhibitor along with a bioceramic agent to the periodontal pocket. It is proposed that the present system, if given along with a systemic antibiotic, would be a fruitful approach for periodontitis amelioration. To fulfill the aforementioned objective, a doxycycline hyclate- and hydroxyapatite-adsorbed composite was prepared by a physical adsorption method and successfully loaded inside sodium alginate-chitosan nanoparticles and optimized based on particle size and drug content. Optimized formulation was then subjected to different evaluation parameters like encapsulation efficiency, hydroxyapatite content, ζ potential, surface morphology, in vitro drug release, cell line studies, and stability studies. For the optimized formulation, particle size, polydispersity index (PDI), entrapment efficiency, ζ potential, and drug content were found to be 336.50 nm, 0.23, 41.77%, -13.85 mV, and 14.00%, respectively. The surface morphology of the placebo and adsorbed composite-loaded nanoparticles as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the spherical shape and rough surface of the particles. In gingival crevicular fluid (GCF) 7.6, a sustained drug release profile was obtained up to 36 h. In vitro % viability studies performed on murine fibroblast cells (NIH3T3) and human periodontal ligament (hPDL) cell lines confirmed the proliferative nature of the formulation. Also, when subjected to stability studies for 4 weeks, particle size, PDI, and drug content did not vary considerably, thereby ensuring the stable nature of nanoparticles. Henceforth, sodium alginate-chitosan nanoparticles appeared to be a good carrier system for doxycycline hyclate and hydroxyapatite for periodontal therapy. If given along with a system antibiotic, the system will serve as a fruitful tool for infection-mediated periodontal regeneration and healing.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Enam Reyaz
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Mirza Adil Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Akbar Naqvi
- Department of Dentistry, HIMSR, New Delhi 110062, India
| | | | | | | | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
4
|
Micu IC, Muntean A, Roman A, Stratul ȘI, Pall E, Ciurea A, Soancă A, Negucioiu M, Barbu Tudoran L, Delean AG. A Local Desiccant Antimicrobial Agent as an Alternative to Adjunctive Antibiotics in the Treatment of Periodontitis: A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030456. [PMID: 36978324 PMCID: PMC10044681 DOI: 10.3390/antibiotics12030456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Periodontitis is one of the most common oral polymicrobial infectious diseases induced by the complex interplay between the altered subgingival microbiota and the host’s dysregulated immune-inflammatory response, leading to the initiation of progressive and irreversible destruction of the periodontal tissues and eventually to tooth loss. The main goal of cause-related periodontal therapy is to eliminate the dysbiotic subgingival biofilm in order to arrest local inflammation and further periodontal tissue breakdown. Because, in some cases, subgingival mechanical instrumentation has limited efficiency in achieving those goals, various adjunctive therapies, mainly systemic and locally delivered antimicrobials, have been proposed to augment its effectiveness. However, most adjunctive antimicrobials carry side effects; therefore, their administration should be precociously considered. HybenX® (HY) is a commercial therapeutical agent with decontamination properties, which has been studied for its effects in treating various oral pathological conditions, including periodontitis. This review covers the current evidence regarding the treatment outcomes and limitations of conventional periodontal therapies and provides information based on the available experimental and clinical studies related to the HY mechanism of action and effects following its use associated with subgingival instrumentation and other types of dental treatments.
Collapse
Affiliation(s)
- Iulia C. Micu
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
| | - Alexandrina Muntean
- Department of Pedodontics, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Avram Iancu St., No. 31, 400117 Cluj-Napoca, Romania
- Correspondence: (A.M.); (A.S.)
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
| | - Ștefan I. Stratul
- Department of Periodontology, Anton Sculean Research Center of Periodontal and Peri-Implant Diseases, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy Timișoara, Bulevardul Revoluției din 1989, No.9, 300230 Timișoara, Romania
| | - Emöke Pall
- Department of Infectious Disease, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Mănăștur St., No. 3-5, 400372 Cluj-Napoca, Romania
| | - Andreea Ciurea
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
| | - Andrada Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
- Correspondence: (A.M.); (A.S.)
| | - Marius Negucioiu
- Department of Prosthodontics, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor St., No. 32, 400006 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Center, Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeş-Bolyai University, Clinicilor St., No. 5-7, 400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory (LIME), National Institute for Research and Development of Isotopic and Molecular Technologies, Institutul Național de Cercetare-Dezvoltare pentru Tehnologii Izotopice și Moleculare, 67-103 Donath St., 400293 Cluj-Napoca, Romania
| | - Ada G. Delean
- Department of Cariology, Endodontics and Oral Pathology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Moților St., No. 33, 400001 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Wendorff-Tobolla LM, Wolgin M, Wagner G, Klerings I, Dvornyk A, Kielbassa AM. A Systematic Review and Meta-Analysis on the Efficacy of Locally Delivered Adjunctive Curcumin ( Curcuma longa L.) in the Treatment of Periodontitis. Biomedicines 2023; 11:481. [PMID: 36831018 PMCID: PMC9953093 DOI: 10.3390/biomedicines11020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
This meta-analysis intended to assess evidence on the efficacy of locally delivered curcumin/turmeric as an adjunctive to scaling and root planing (SRP), on clinical attachment level (CAL) and probing pocket depth (PPD), compared to SRP alone or in combination with chlorhexidine (CHX). RCTs were identified from PubMed, Cochrane Library, BASE, LIVIVO, Dentistry Oral Sciences Source, MEDLINE Complete, Scopus, ClinicalTrials.gov, and eLibrary, until August 2022. The risk of bias (RoB) was assessed with the Cochrane Risk of Bias tool 2.0. A random-effects meta-analysis was performed by pooling mean differences with 95% confidence intervals. Out of 827 references yielded by the search, 23 trials meeting the eligibility criteria were included. The meta-analysis revealed that SRP and curcumin/turmeric application were statistically significantly different compared to SRP alone for CAL (-0.33 mm; p = 0.03; 95% CI -0.54 to -0.11; I2 = 62.3%), and for PPD (-0.47 mm; p = 0.024; 95% CI -0.88 to -0.06; I2 = 95.5%); however, this difference was considered clinically meaningless. No significant differences were obtained between patients treated with SRP and CHX, compared to SRP and curcumin/turmeric. The RoB assessment revealed numerous inaccuracies, thus raising concerns about previous overestimates of potential treatment effects.
Collapse
Affiliation(s)
- Louisa M. Wendorff-Tobolla
- Center for Operative Dentistry, Periodontology, and Endodontology, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University (DPU), 3500 Krems, Austria
| | - Michael Wolgin
- Center for Operative Dentistry, Periodontology, and Endodontology, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University (DPU), 3500 Krems, Austria
| | - Gernot Wagner
- Department of Evidence-based Medicine and Evaluation, Danube University Krems, 3500 Krems, Austria
| | - Irma Klerings
- Department of Evidence-based Medicine and Evaluation, Danube University Krems, 3500 Krems, Austria
| | - Anna Dvornyk
- Department of Propaedeutics of Therapeutic Dentistry, Faculty of Dentistry, Poltava State Medical University (PSMU), 36011 Poltava, Ukraine
| | - Andrej M. Kielbassa
- Center for Operative Dentistry, Periodontology, and Endodontology, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University (DPU), 3500 Krems, Austria
| |
Collapse
|
6
|
Khalil B, Abou Sulaiman A, Al Hajjar B. The effects of adjunctive use of a desiccant agent in the treatment of stage III periodontitis (Randomized controlled clinical trial). Saudi Dent J 2023; 35:172-177. [PMID: 36942201 PMCID: PMC10024107 DOI: 10.1016/j.sdentj.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Introduction Several bacterial species inhabiting the dental plaque biofilms are associated with periodontitis. Objective The main objective of this study was to compare the efficacy of the desiccant agent HYBENX (HBX) as an adjunct to scaling and root planning (SRPX) versus scaling and root planning (SRP) alone in the treatment of periodontitis. Materials and Methods The study sample comprised 25 patients with periodontitis stage Ш (grades A and B). Each maxillary quadrant was randomly allocated to two groups: SRPX group, including 25 quadrants treated with SRP plus HYBENX, and SRP group, including 25 quadrants treated with SRP alone. The following clinical periodontal parameters were recorded at baseline (immediately after treatment, T0), and 1 month (T1), 3 months (T3), and 6 months (T6) after treatment: probing pocket depth (PPD), relative attachment level (RAL), plaque index (PLI), gingival index (GI), gingival height (GH), and bleeding on probing index (BOP). Results Comparisons within each study group showed that all clinical parameters significantly improved (P < 0.001) at all follow-up intervals. In contrast, a statistically significant difference (P < 0.001) was observed in RAL, PPD, BOP, and GI indices at all follow-up intervals between the SRPX and SRP groups. In contrast, no significant differences (P > 0.05) were found in GH and PLI between the study groups. Conclusion Both treatment groups showed improved periodontal parameters. However, applying desiccant gel as an adjunct to SRP was significantly effective in the treatment of stage III periodontitis.
Collapse
Affiliation(s)
- Belal Khalil
- Department of Periodontology, Faculty of Dentistry, Damascus University, Damascus, Syria
- Corresponding author at: Department of Periodontology, Faculty of Dentistry, Damascus University, Damascus, Syria.
| | - Ali Abou Sulaiman
- Department of Periodontology, Faculty of Dentistry, Damascus University, Damascus, Syria
| | - Batoul Al Hajjar
- Department of Cosmetic Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syria
| |
Collapse
|
7
|
Dong Y, Yao L, Cai L, Jin M, Forouzanfar T, Wu L, Liu J, Wu G. Antimicrobial and Pro-Osteogenic Coaxially Electrospun Magnesium Oxide Nanoparticles-Polycaprolactone /Parathyroid Hormone-Polycaprolactone Composite Barrier Membrane for Guided Bone Regeneration. Int J Nanomedicine 2023; 18:369-383. [PMID: 36700148 PMCID: PMC9869899 DOI: 10.2147/ijn.s395026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction An antibacterial and pro-osteogenic coaxially electrospun nanofiber guided bone regeneration (GBR) membrane was fabricated to satisfy the complicated and phased requirements of GBR process. Methods In this study, we synthesize dual-functional coaxially electrospun nanofiber GBR membranes by encapsulating parathyroid hormone (PTH) in the core layer and magnesium oxide nanoparticles (MgONPs) in the shell layer (MgONPs-PCL/PTH-PCL). Herein, the physicochemical characterization of MgONPs-PCL/PTH-PCL, the release rates of MgONPs and PTH, and antibacterial efficiency of the new membrane were evaluated. Furthermore, the pro-osteogenicity of the membranes was assessed both in-vitro and in-vivo. Results We successfully fabricated a coaxially electrospun nanofiber MgONPs-PCL/PTH-PCL membrane with the majority of nanofibers (>65%) ranged from 0.40~0.60μm in diameter. MgONPs-PCL/PTH-PCL showed outstanding antibacterial potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through the release of MgONPs. We also discovered that the incorporation of MgONPs significantly prolonged the release of PTH. Furthermore, both the in-vivo and in-vitro studies demonstrated that high dosage of PTH promoted pro-osteogenicity of the membrane to improve bone regeneration efficacy with the presence of MgONPs. Conclusion The new composite membrane is a promising approach to enhance bone regeneration in periodontitis or peri-implantitis patients with large-volume bone defects.
Collapse
Affiliation(s)
- Yiwen Dong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Litao Yao
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands,Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China,Correspondence: Litao Yao, Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China, Zhejiang, Email
| | - Lei Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Mi Jin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Lianjun Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China,Jinsong Liu, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China, Email
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| |
Collapse
|
8
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
9
|
Mahendra J, Palathingal P, Mahendra L, Alzahrani KJ, Banjer HJ, Alsharif KF, Halawani IF, Muralidharan J, Annamalai PT, Verma SS, Sharma V, Varadarajan S, Bhandi S, Patil S. Impact of Red Complex Bacteria and TNF-α Levels on the Diabetic and Renal Status of Chronic Kidney Disease Patients in the Presence and Absence of Periodontitis. BIOLOGY 2022; 11:451. [PMID: 35336824 PMCID: PMC8945045 DOI: 10.3390/biology11030451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Scientific evidence shows a positive association in the etiopathogenesis of periodontitis and chronic kidney disease (CKD). Various confounding factors, such as obesity, diabetes, and inflammation, also play a significant role in the progression of CKD, which remains unexplored. We hypothesise the role of red complex bacteria with various confounding factors associated with chronic kidney disease. The study comprised a total of 120 participants categorised into 4 groups: the control group (C), periodontitis subjects without CKD (P), periodontally healthy chronic kidney disease subjects (CKD), and subjects having both periodontitis and CKD (P + CKD), with 30 subjects in each group. Demographic variables, and periodontal, renal, and diabetic parameters were recorded. Tumour necrosis factor (TNF)-α levels and those of red complex bacteria such as Prophyromonas gingivalis (P.g), Treponema denticola (T.d), and Tonerella forsythia (T.f) were assessed, and the obtained results were statistically analysed. Among the various demographic variables, age showed a level of significance. Mean PI, GI, CAL, and PPD (the proportion of sites with PPD ≥ 5 mm and CAL ≥ 3 mm) were elevated in the P + CKD group. Diabetic parameters such as fasting blood sugar (FBS) and HbA1c levels were also greater in the P + CKD group. Renal parameters such as eGFR and serum creatinine levels were greater in CKD patients. The estimation of red complex periodontal pathogens such as Pg, Td and Tf levels were significantly greater in the P and P + CKD groups. Pearson correlation analysis revealed significant correlation of red complex bacteria with all variables. Greater levels of P.g, T.d and T.f were found in the P groups, thus indicating their important role in the initiation and progression of inflammation of periodontitis and CKD, with diabetes as one of the confounding factors. The study also confirmed a log-linear relationship between TNF-α levels and red complex bacteria, thereby demonstrating the role of inflammatory biomarkers in periodontal disease progression that could contribute to the development of systemic inflammation such as CKD.
Collapse
Affiliation(s)
- Jaideep Mahendra
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Greater Education and Research, Chennai 600095, India;
| | - Plato Palathingal
- Department of Periodontics, PSM College of Dental Science and Research, Thrissur 680519, India;
| | - Little Mahendra
- Department of Periodontics, Dean, Maktoum Bin Hamdan Dental University, Dubai 122002, United Arab Emirates;
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (H.J.B.); (K.F.A.); (I.F.H.)
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (H.J.B.); (K.F.A.); (I.F.H.)
| | - Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (H.J.B.); (K.F.A.); (I.F.H.)
| | - Ibrahim Faisal Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (H.J.B.); (K.F.A.); (I.F.H.)
| | - Janani Muralidharan
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Greater Education and Research, Chennai 600095, India;
| | | | - Shyam Sankar Verma
- Department of Nephrology, Jubilee Medical College Hospital, Thrissur 680005, India;
| | - Vivek Sharma
- Department of Periodontics, Desh Bhagat Dental College and Hospital, Mandi Gobindgarh 114141, India;
| | - Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Shilpa Bhandi
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia
| |
Collapse
|