1
|
Liu Z, Fu B, Wang J, Li W, Hu Y, Liu Z, Fu C, Li D, Wang C, Xu N. Transcriptomics Reveals the Effect of Strain Interactions on the Growth of A. Oryzae and Z. Rouxii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5525-5534. [PMID: 36989392 DOI: 10.1021/acs.jafc.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The microbial community structure in traditional fermented foods is quite complex, making the relationship between strains unclear. In this regard, the co-culture system can simulate microbial interactions during food fermentation and reveal the morphological changes, metabolic processes, and gene expression of microbial communities. The present study sought to investigate the effects of microbial interactions on the growth of Aspergillus oryzae and Zygosaccharomyces rouxii through omics. After co-cultivation, the pH value and dry weight were consistent with the pure culture of Z. rouxii. Additionally, the consumption of reducing sugar decreased, and the enzymatic activity increased compared with the pure culture of fungus. The analysis of volatile organic compounds (VOCs) and transcriptomics showed that co-culture significantly promoted the effect on Z. rouxii. A total of 6 different VOCs and 2202 differentially expressed genes were identified in the pure and co-culture of Z. rouxii. The differentially expressed genes were mainly related to the endonucleolytic cleavage of rRNA, ribosome biogenesis in eukaryotes, and RNA polymerase metabolic pathways. The study results will provide insights into the effect of microbial interactions on the growth of A. oryzae and Z. rouxii.
Collapse
Affiliation(s)
- Zeping Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Bin Fu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jing Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zhijie Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Caixia Fu
- Hubei Tulaohan Flavouring and Food Co., Ltd., Yichang, Hubei 443000, China
| | - Dongsheng Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ning Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
2
|
Variation with In Vitro Analysis of Volatile Profiles among Aspergillus flavus Strains from Louisiana. SEPARATIONS 2023. [DOI: 10.3390/separations10030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Volatile organic compounds (VOCs) produced by A. flavus strains were first captured and identified to discern between non-aflatoxigenic and toxigenic phenotypes, and more recently to help with detecting fungal infection, but not with the goal of using VOCs produced by non-aflatoxigenic strains to inhibit growth and/or production of one or more mycotoxins (e.g., aflatoxin and cyclopiazonic acid) by toxigenic aspergilli. In this study, four Aspergillus strains from Louisiana (one non-aflatoxigenic and three toxigenic) were grown on various substrates and had their headspaces captured and analyzed by solid-phase microextraction/gas chromatography/mass spectroscopy (SPME/GC/MS), to find biocontrol and biomarker compounds. Here, we present a collection of nearly 100 fungus-related VOCs, many of which were substrate dependent. Thirty-one were produced across multiple replicates and the rest were observed in a single replicate. At least three VOCs unique to non-aflatoxigenic strain LA1 can be tested for biocontrol properties (e.g., euparone, 4-nonyne), and at least four VOCs unique to toxigenic strains LA2-LA4 can be explored as biomarkers (e.g., 2-heptanone, glycocyamidine) to detect their presence while infecting crops in the field or in storage.
Collapse
|
3
|
Impact of Volatile Organic Compounds on the Growth of Aspergillus flavus and Related Aflatoxin B1 Production: A Review. Int J Mol Sci 2022; 23:ijms232415557. [PMID: 36555197 PMCID: PMC9779742 DOI: 10.3390/ijms232415557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) are secondary metabolites of varied chemical nature that are emitted by living beings and participate in their interactions. In addition, some VOCs called bioactive VOCs cause changes in the metabolism of other living species that share the same environment. In recent years, knowledge on VOCs emitted by Aspergillus flavus, the main species producing aflatoxin B1 (AFB1), a highly harmful mycotoxin, has increased. This review presents an overview of all VOCs identified as a result of A. flavus toxigenic (AFB1-producing) and non-toxigenic (non AFB1-producing) strains growth on different substrates, and the factors influencing their emissions. We also included all bioactive VOCs, mixes of VOCs or volatolomes of microbial species that impact A. flavus growth and/or related AFB1 production. The modes of action of VOCs impacting the fungus development are presented. Finally, the potential applications of VOCs as biocontrol agents in the context of mycotoxin control are discussed.
Collapse
|
4
|
Josselin L, De Clerck C, De Boevre M, Moretti A, Jijakli MH, Soyeurt H, Fauconnier ML. Volatile Organic Compounds Emitted by Aspergillus flavus Strains Producing or Not Aflatoxin B1. Toxins (Basel) 2021; 13:705. [PMID: 34678998 PMCID: PMC8539470 DOI: 10.3390/toxins13100705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus is a phytopathogenic fungus able to produce aflatoxin B1 (AFB1), a carcinogenic mycotoxin that can contaminate several crops and food commodities. In A. flavus, two different kinds of strains can co-exist: toxigenic and non-toxigenic strains. Microbial-derived volatile organic compounds (mVOCs) emitted by toxigenic and non-toxigenic strains of A. flavus were analyzed by solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) in a time-lapse experiment after inoculation. Among the 84 mVOCs emitted, 44 were previously listed in the scientific literature as specific to A. flavus, namely alcohols (2-methylbutan-1-ol, 3-methylbutan-1-ol, 2-methylpropan-1-ol), aldehydes (2-methylbutanal, 3-methylbutanal), hydrocarbons (toluene, styrene), furans (2,5-dimethylfuran), esters (ethyl 2-methylpropanoate, ethyl 2-methylbutyrate), and terpenes (epizonaren, trans-caryophyllene, valencene, α-copaene, β-himachalene, γ-cadinene, γ-muurolene, δ-cadinene). For the first time, other identified volatile compounds such as α-cadinol, cis-muurola-3,5-diene, α-isocomene, and β-selinene were identified as new mVOCs specific to the toxigenic A. flavus strain. Partial Least Square Analysis (PLSDA) showed a distinct pattern between mVOCs emitted by toxigenic and non-toxigenic A. flavus strains, mostly linked to the diversity of terpenes emitted by the toxigenic strains. In addition, the comparison between mVOCs of the toxigenic strain and its non-AFB1-producing mutant, coupled with a semi-quantification of the mVOCs, revealed a relationship between emitted terpenes (β-chamigrene, α-corocalene) and AFB1 production. This study provides evidence for the first time of mVOCs being linked to the toxigenic character of A. flavus strains, as well as terpenes being able to be correlated to the production of AFB1 due to the study of the mutant. This study could lead to the development of new techniques for the early detection and identification of toxigenic fungi.
Collapse
Affiliation(s)
- Laurie Josselin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium;
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, 70126 Bari, Italy;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Hélène Soyeurt
- Statistic, Informatic and Applied Modelling, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
5
|
Culture optimization for production and characterization of bioflocculant by Aspergillus flavus grown on chicken viscera hydrolysate. World J Microbiol Biotechnol 2019; 35:121. [DOI: 10.1007/s11274-019-2696-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
6
|
Stierlin É, Nicolè F, Fernandez X, Michel T. Development of a Headspace Solid‐Phase Microextraction Gas Chromatography‐Mass Spectrometry Method to Study Volatile Organic Compounds (VOCs) Emitted by Lavender Roots. Chem Biodivers 2019; 16:e1900280. [DOI: 10.1002/cbdv.201900280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Émilie Stierlin
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272 06108 Nice France
| | - Florence Nicolè
- Université de Lyon, Université Jean Monnet, Laboratoire BVPAM, FRE CNRS INEE 3727 – EA 3061 23 rue du Dr Paul Michelon 42000 Saint-Étienne France
| | - Xavier Fernandez
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272 06108 Nice France
| | - Thomas Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272 06108 Nice France
| |
Collapse
|
7
|
Yeast Smell Like What They Eat: Analysis of Volatile Organic Compounds of Malassezia furfur in Growth Media Supplemented with Different Lipids. Molecules 2019; 24:molecules24030419. [PMID: 30678374 PMCID: PMC6384859 DOI: 10.3390/molecules24030419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
Malassezia furfur is part of the human skin microbiota. Its volatile organic compounds (VOCs) possibly contribute to the characteristic odour in humans, as well as to microbiota interaction. The aim of this study was to investigate how the lipid composition of the liquid medium influences the production of VOCs. Growth was performed in four media: (1) mDixon, (2) oleic acid (OA), (3) oleic acid + palmitic acid (OA+PA), and (4) palmitic acid (PA). The profiles of the VOCs were characterized by HS-SPME/GC-MS in the exponential and stationary phases. A total number of 61 VOCs was found in M. furfur, among which alkanes, alcohols, ketones, and furanic compounds were the most abundant. Some compounds previously reported for Malassezia (γ-dodecalactone, 3-methylbutan-1-ol, and hexan-1-ol) were also found. Through our experiments, using univariate and multivariate unsupervised (Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA)) and supervised (Projection to Latent Structures Discriminant Analysis (PLS-DA)) statistical techniques, we have proven that each tested growth medium stimulates the production of a different volatiles profile in M. furfur. Carbon dioxide, hexan-1-ol, pentyl acetate, isomer5 of methyldecane, dimethyl sulphide, undec-5-ene, isomer2 of methylundecane, isomer1 of methyldecane, and 2-methyltetrahydrofuran were established as differentiating compounds among treatments by all the techniques. The significance of our findings deserves future research to investigate if certain volatile profiles could be related to the beneficial or pathogenic role of this yeast.
Collapse
|
8
|
Abstract
While yeast is one of the most studied organisms, its intricate biology remains to be fully mapped and understood. This is especially the case when it comes to capture rapid, in vivo fluctuations of metabolite levels. Secondary electrospray ionization-high resolution mass spectrometry SESI-HRMS is introduced here as a sensitive and noninvasive analytical technique for online monitoring of microbial metabolic activity. The power of this technique is exemplarily shown for baker’s yeast fermentation, for which the time-resolved abundance of about 300 metabolites is demonstrated. The results suggest that a large number of metabolites produced by yeast from glucose neither are reported in the literature nor are their biochemical origins deciphered. With the technique demonstrated here, researchers interested in distant disciplines such as yeast physiology and food quality will gain new insights into the biochemical capability of this simple eukaryote.
Collapse
|