1
|
Bastardo-Fernández I, Chekri R, Noireaux J, Givelet L, Lambeng N, Delvallée A, Loeschner K, Fisicaro P, Jitaru P. Characterisation of titanium dioxide (nano)particles in foodstuffs and E171 additives by single particle inductively coupled plasma-tandem mass spectrometry using a highly efficient sample introduction system. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:867-884. [PMID: 38833436 DOI: 10.1080/19440049.2024.2359532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
This study addressed primarily the characterisation and quantification of titanium dioxide (TiO2) (nano)particles (NPs) in a large variety of commercial foodstuffs. The samples were purchased from local markets in Spain before the ban of TiO2 food additive (E171) in the EU. The analyses were carried out by single particle inductively coupled plasma-tandem mass spectrometry (spICP-MS/MS) in mass shift mode (oxidation of 48Ti to 48Ti16O (m/z = 64)) and using a highly efficient sample introduction system (APEX™ Ω). This novel analytical approach allowed accurate characterisation of a large panel of TiO2 NPs sizes ranging from ∼12 to ∼800 nm without isobaric interferences from 48Ca isotope, which is highly abundant in most of the analysed foodstuffs. TiO2 NPs were extracted from foodstuffs using sodium dodecyl sulphate (0.1%, w/v) and diluted with ultra-pure water to reach ∼ 1000 particles signals per acquisition. All the analysed samples contained TiO2 NPs with concentrations ranging from 1010 to 1014 particles kg-1, but with significant low recoveries compared to the total Ti determination. A selection of samples was also analysed using a similar spICP-MS/MS approach with a conventional sample introduction system. The comparison of results highlighted the improvement of the limit of detection in size (12 nm) by the APEX™ Ω system, providing nanoparticulate fractions ranging from ∼4% (cheddar sauce) up to ∼87% (chewing gum), which is among the highest nanoparticulate fractions reported in literature using a spICP-MS approach. In addition, two commercially available E171 additives were analysed using the previous approaches and other techniques in different European laboratories with the aim of methods inter-comparison. This study provides occurrence data related to TiO2 NPs in common commercial foodstuffs but it also demonstrates the potential of the novel analytical approach based on APEX™-ICP-MS/MS to characterise nano-size TiO2 particles in complex matrices such as foodstuffs.
Collapse
Affiliation(s)
- Isabel Bastardo-Fernández
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
- Environment and Climate Change Department, National Metrology and Testing Laboratory (LNE), Paris, France
| | - Rachida Chekri
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Johanna Noireaux
- Environment and Climate Change Department, National Metrology and Testing Laboratory (LNE), Paris, France
| | - Lucas Givelet
- Research Group for Analytical Food Chemistry, Technical University of Denmark (DTU), National Food Institute, Kgs. Lyngby, Denmark
| | - Nora Lambeng
- Department of Materials Science, National Metrology and Testing Laboratory (LNE), Trappes, France
| | - Alexandra Delvallée
- Department of Materials Science, National Metrology and Testing Laboratory (LNE), Trappes, France
| | - Katrin Loeschner
- Research Group for Analytical Food Chemistry, Technical University of Denmark (DTU), National Food Institute, Kgs. Lyngby, Denmark
| | - Paola Fisicaro
- Division of Chemistry and Biology, National Metrology and Testing Laboratory (LNE), Paris, France
| | - Petru Jitaru
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
2
|
Fernández-Trujillo S, Jiménez-Moreno M, Rodríguez-Fariñas N, Rodríguez Martín-Doimeadios RC. Critical evaluation of the potential of ICP-MS-based systems in toxicological studies of metallic nanoparticles. Anal Bioanal Chem 2024; 416:2657-2676. [PMID: 38329514 PMCID: PMC11009754 DOI: 10.1007/s00216-024-05181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The extensive application of metallic nanoparticles (NPs) in several fields has significantly impacted our daily lives. Nonetheless, uncertainties persist regarding the toxicity and potential risks associated with the vast number of NPs entering the environment and human bodies, so the performance of toxicological studies are highly demanded. While traditional assays focus primarily on the effects, the comprehension of the underlying processes requires innovative analytical approaches that can detect, characterize, and quantify NPs in complex biological matrices. Among the available alternatives to achieve this information, mass spectrometry, and more concretely, inductively coupled plasma mass spectrometry (ICP-MS), has emerged as an appealing option. This work critically reviews the valuable contribution of ICP-MS-based techniques to investigate NP toxicity and their transformations during in vitro and in vivo toxicological assays. Various ICP-MS modalities, such as total elemental analysis, single particle or single-cell modes, and coupling with separation techniques, as well as the potential of laser ablation as a spatially resolved sample introduction approach, are explored and discussed. Moreover, this review addresses limitations, novel trends, and perspectives in the field of nanotoxicology, particularly concerning NP internalization and pathways. These processes encompass cellular uptake and quantification, localization, translocation to other cell compartments, and biological transformations. By leveraging the capabilities of ICP-MS, researchers can gain deeper insights into the behaviour and effects of NPs, which can pave the way for safer and more responsible use of these materials.
Collapse
Affiliation(s)
- Sergio Fernández-Trujillo
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - María Jiménez-Moreno
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Nuria Rodríguez-Fariñas
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Rosa Carmen Rodríguez Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain.
| |
Collapse
|
3
|
Haddad M, Frickenstein A, Wilhelm S. High-Throughput Single-Cell Analysis of Nanoparticle-Cell Interactions. Trends Analyt Chem 2023; 166:117172. [PMID: 37520860 PMCID: PMC10373476 DOI: 10.1016/j.trac.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Understanding nanoparticle-cell interactions at single-nanoparticle and single-cell resolutions is crucial to improving the design of next-generation nanoparticles for safer, more effective, and more efficient applications in nanomedicine. This review focuses on recent advances in the continuous high-throughput analysis of nanoparticle-cell interactions at the single-cell level. We highlight and discuss the current trends in continual flow high-throughput methods for analyzing single cells, such as advanced flow cytometry techniques and inductively coupled plasma mass spectrometry methods, as well as their intersection in the form of mass cytometry. This review further discusses the challenges and opportunities with current single-cell analysis approaches and provides proposed directions for innovation in the high-throughput analysis of nanoparticle-cell interactions.
Collapse
Affiliation(s)
- Majood Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
4
|
Su Y, Gao J, Dong X, Wheeler KA, Wang Z. Neutrophil-Mediated Delivery of Nanocrystal Drugs via Photoinduced Inflammation Enhances Cancer Therapy. ACS NANO 2023; 17:15542-15555. [PMID: 37577982 PMCID: PMC10480050 DOI: 10.1021/acsnano.3c02013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The efficient delivery of anticancer agents into tumor microenvironments is critical for the success of cancer therapies, but it is a prerequisite that drug carriers should overcome tumor vasculature and possess high drug contents. Here, we found that photoinduced inflammation response caused the migration of neutrophils into tumor microenvironments and neutrophils transported neutrophil-targeted nanoparticles (NPs) across the tumor blood barrier. The results showed that tumor delivery efficiencies of NPs were 5% ID/g, and they were independent of particle sizes (30-200 nm) and their doses (108-1011 NPs). To efficiently deliver anticancer agents into tumors via neutrophils, we fabricated carrier-free paclitaxel nanocrystals (PTX NC). The results showed that neutrophil uptake of PTX NC did not impair neutrophil tumor infiltration, and the sustainable release of PTX from PTX NC in tumors was regulated by paclitaxel protein complexes, thus improving the mouse survival in two preclinical models. Our studies demonstrate that delivery of nanocrystal drugs via neutrophils is a promising method to effectively treat a wide range of cancers, and we have also identified a mechanism of drug release from neutrophils in tumors.
Collapse
Affiliation(s)
- Yujie Su
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Kraig A Wheeler
- Department of Chemistry, Whitworth University, Spokane, Washington 99251, United States
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
5
|
Bettini S, Ottolini M, Valli D, Pagano R, Ingrosso C, Roeffaers M, Hofkens J, Valli L, Giancane G. Synthesis and Characterization of Gold Chiral Nanoparticles Functionalized by a Chiral Drug. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091526. [PMID: 37177071 PMCID: PMC10180680 DOI: 10.3390/nano13091526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Inorganic chiral nanoparticles are attracting more and more attention due to their peculiar optical properties and potential biological applications, such as bioimaging, therapeutics, and diagnostics. Among inorganic chiral nanoparticles, gold chiral nanostructures were demonstrated to be very interesting in this context, with good physical chemical stability and also the possibility to decorate the surface, improving biomedical application as the interaction with the bio-systems. Gold (Au) nanostructures were synthesized according to a seed-mediated procedure which envisages the use of cetyltrimethylammonium bromide (CTAB) as the capping agent and L- and D-cysteine to promote chirality. Au nanostructures have been demonstrated to have opposite circular dichroism signals depending on the amino acid enantiomer used during the synthesis. Then, a procedure to decorate the Au surface with penicillamine, a drug used for the treatment of Wilson's disease, was developed. The composite material of gold nanoparticles/penicillamine was characterized using electron microscopy, and the penicillamine functionalization was monitored by means of UV-Visible, Raman, and infrared spectroscopy, highlighting the formation of the Au-S bond. Furthermore, electron circular dichroism was used to monitor the chirality of the synthesized nanostructures and it was demonstrated that both penicillamine enantiomers can be successfully bonded with both the enantiomers of the gold nanostructures without affecting gold nanoparticles' chirality. The effective modification of nanostructures' surfaces via penicillamine introduction allowed us to address the important issue of controlling chirality and surface properties in the chiral nano-system.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Michela Ottolini
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Donato Valli
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Rosanna Pagano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Chiara Ingrosso
- CNR-IPCF SS Bari, c/o Dipartimento di Chimica dell'Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy
| | | | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Gabriele Giancane
- Department of Cultural Heritage, University of Salento, Via D. Birago 84, 73100 Lecce, Italy
| |
Collapse
|
6
|
Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences-Part 2: nanomedicine, immunochemistry, mass cytometry, and bioassays. Anal Bioanal Chem 2022; 414:7363-7386. [PMID: 36042038 PMCID: PMC9427439 DOI: 10.1007/s00216-022-04260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Inductively coupled-plasma mass spectrometry (ICP-MS) has transformed our knowledge on the role of trace and major elements in biology and has emerged as the most versatile technique in elemental mass spectrometry. The scope of ICP-MS has dramatically changed since its inception, and nowadays, it is a mature platform technology that is compatible with chromatographic and laser ablation (LA) systems. Over the last decades, it kept pace with various technological advances and was inspired by interdisciplinary approaches which endorsed new areas of applications. While the first part of this review was dedicated to fundamentals in ICP-MS, its hyphenated techniques and the application in biomonitoring, isotope ratio analysis, elemental speciation analysis, and elemental bioimaging, this second part will introduce relatively current directions in ICP-MS and their potential to provide novel perspectives in the medical sciences. In this context, current directions for the characterisation of novel nanomaterials which are considered for biomedical applications like drug delivery and imaging platforms will be discussed while considering different facets of ICP-MS including single event analysis and dedicated hyphenated techniques. Subsequently, immunochemistry techniques will be reviewed in their capability to expand the scope of ICP-MS enabling analysis of a large range of biomolecules alongside elements. These methods inspired mass cytometry and imaging mass cytometry and have the potential to transform diagnostics and treatment by offering new paradigms for personalised medicine. Finally, the interlacing of immunochemistry methods, single event analysis, and functional nanomaterials has opened new horizons to design novel bioassays which promise potential as assets for clinical applications and larger screening programs and will be discussed in their capabilities to detect low-level proteins and nucleic acids.
Collapse
Affiliation(s)
- David Clases
- Nano Mirco LAB, Institute of Chemistry, University of Graz, Graz, Austria.
| | | |
Collapse
|
7
|
Wang C, Zhou HR, Zhao YT, Xiang ZQ, Pan K, Yang L, Miao AJ. A label-free technique to quantify and visualize gold nanoparticle accumulation at the single-cell level. CHEMOSPHERE 2022; 302:134857. [PMID: 35561767 DOI: 10.1016/j.chemosphere.2022.134857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Despite their wide bioapplications, potential health risks of gold nanoparticles (AuNPs) remain unclear. As a determinant of their risks, AuNP accumulation within a cell population is subject to cell-to-cell heterogeneity. Methods to simultaneously quantify and visualize intracellular AuNPs at the single-cell level are, however, lacking. Here we developed a novel label-free technique, based on hyperspectral imaging with enhanced darkfield microscopy (HSI-DFM), to visualize and quantify AuNP accumulation at the single-cell level. The identification ability of the hyperspectral libraries derived from extra- and intracellular AuNPs was compared. The spectral number in the libraries was optimized to maximize their identification ability while minimizing the identification time. In addition, a filtration method was established to merge spectral libraries from different cell lines based on their similarity. The intracellularly accumulated AuNPs as determined by HSI-DFM well correlated with those detected by inductively coupled plasma mass spectrometry. This validation allowed us to calculate the intracellular concentration of AuNPs at the single-cell level and to monitor the accumulation kinetics of AuNPs in living cells. The label-free method developed herein can be applied to other types of AuNPs differing in their physicochemical properties as well as other NPs, as long as they are detectable by HSI-DFM.
Collapse
Affiliation(s)
- Chuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Hao-Ran Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Ya-Tong Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Zhi-Qian Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
8
|
Unlocking the Treasure Box: The Role of HEPES Buffer in Disassembling an Uncommon Ferritin Nanoparticle. SEPARATIONS 2022. [DOI: 10.3390/separations9080222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ferritins are ideal nanoparticles as drug delivery systems due to their hollow-sphere structure and the ability to target specific receptors on the cell surface. Here, we develop and characterize a new ferritin derived from the chimeric humanized A. fulgidus one, already designed to recognize the TfR1 receptor. Starting from the synthetic gene of this chimeric protein, we replaced two positively charged amino acids with two alanine residues to close the large triangular pores on its surface. These mutations make the protein nanoparticle suitable to incorporate even small therapeutics without leakage. Size-exclusion chromatography shows that the assembling/disassembling of this new protein cage can be easily fine-tuned by varying the HEPES buffer and MgCl2 concentration. The protein cage can be opened using 150 mM HEPES buffer without magnesium ions. Adding this divalent cation to the solution promotes the quick assembly of the ferritin as a 24-mer. The development of this new protein cage paves the way for encapsulation and delivery studies of small molecules for therapeutic and diagnostic purposes.
Collapse
|
9
|
Alhussan A, Palmerley N, Smazynski J, Karasinska J, Renouf DJ, Schaeffer DF, Beckham W, Alexander AS, Chithrani DB. Potential of Gold Nanoparticle in Current Radiotherapy Using a Co-Culture Model of Cancer Cells and Cancer Associated Fibroblast Cells. Cancers (Basel) 2022; 14:cancers14153586. [PMID: 35892845 PMCID: PMC9332249 DOI: 10.3390/cancers14153586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Many cancer therapeutics do not account for the complexity of the tumor microenvironment (TME), which may result in failure when applied clinically. In this paper we utilized a simple tumor model made of two types of pancreatic cancer cells that contribute to the tumor environment, i.e., cancer cells and cancer associated fibroblasts. Herein, radiotherapy along with radiosensitizing gold nanoparticles were used to test the efficacy of a co-culture vs. monoculture model. The results show that the co-culture model exhibited heightened resistance to radiation. Furthermore, we found that the combination of gold radiosensitizers with radiotherapy reduced the radioresistance of the co-culture model compared to radiotherapy alone. This study demonstrates the potential of using nanotherapeutics in targeting the complex tumor microenvironment. Abstract Many cancer therapeutics are tested in vitro using only tumour cells. However, the tumour promoting effect of cancer associated fibroblasts (CAFs) within the tumour microenvironment (TME) is thought to reduce cancer therapeutics’ efficacy. We have chosen pancreatic ductal adenocarcinoma (PDAC) as our tumor model. Our goal is to create a co-culture of CAFs and tumour cells to model the interaction between cancer and stromal cells in the TME and allow for better testing of therapeutic combinations. To test the proposed co-culture model, a gold nanoparticle (GNP) mediated-radiation response was used. Cells were grown in co-culture with different ratios of CAFs to cancer cells. MIA PaCa-2 was used as our PDAC cancer cell line. Co-cultured cells were treated with 2 Gy of radiation following GNP incubation. DNA damage and cell proliferation were examined to assess the combined effect of radiation and GNPs. Cancer cells in co-culture exhibited up to a 23% decrease in DNA double strand breaks (DSB) and up to a 35% increase in proliferation compared to monocultures. GNP/Radiotherapy (RT) induced up to a 25% increase in DNA DSBs and up to a 15% decrease in proliferation compared to RT alone in both monocultured and co-cultured cells. The observed resistance in the co-culture system may be attributed to the role of CAFs in supporting cancer cells. Moreover, we were able to reduce the activity of CAFs using GNPs during radiation treatment. Indeed, CAFs internalize a significantly higher number of GNPs, which may have led to the reduction in their activity. One reason experimental therapeutics fail in clinical trials relates to limitations in the pre-clinical models that lack a true representation of the TME. We have demonstrated a co-culture platform to test GNP/RT in a clinically relevant environment.
Collapse
Affiliation(s)
- Abdulaziz Alhussan
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Nicholas Palmerley
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Julian Smazynski
- Deeley Research Centre, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Joanna Karasinska
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - Daniel J. Renouf
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Abraham S. Alexander
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Correspondence:
| |
Collapse
|
10
|
Zambianchi P, Hermógenes G, Zambianchi J. Quantification of gold nanoparticles using total reflection X-ray fluorescence by Monte Carlo simulation (MCNP code) applied to cancer cell research. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Laycock A, Clark NJ, Clough R, Smith R, Handy RD. Determination of metallic nanoparticles in biological samples by single particle ICP-MS: a systematic review from sample collection to analysis. ENVIRONMENTAL SCIENCE. NANO 2022; 9:420-453. [PMID: 35309016 PMCID: PMC8852815 DOI: 10.1039/d1en00680k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 05/04/2023]
Abstract
A systematic review of the use of single particle ICP-MS to analyse engineered nanomaterials (ENMs) in biological samples (plants, animals, body fluids) has highlighted that efforts have focused on a select few types of ENMs (e.g., Ag and TiO2) and there is a lack of information for some important tissues (e.g., reproductive organs, skin and fatty endocrine organs). The importance of sample storage is often overlooked but plays a critical role. Careful consideration of the ENM and matrix composition is required to select an appropriate protocol to liberate ENMs from a tissue whilst not promoting the transformation of them, or genesis of new particulates. A 'one size fits all' protocol, applicable to all possible types of ENM and biological matrices, does not seem practical. However, alkaline-based extractions would appear to show greater promise for wide applicability to animal tissues, although enzymatic approaches have a role, especially for plant tissues. There is a lack of consistency in metrics reported and how they are determined (e.g. size limit of detection, and proportions of recovery), making comparison between some studies more difficult. In order to establish standardised protocols for regulatory use, effort is needed to: develop certified reference materials, achieve international agree on nomenclature and the use of control samples, and to create a decision tree to help select the best sample preparation for the type of tissue matrix.
Collapse
Affiliation(s)
- Adam Laycock
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus Didcot OX11 0RQ UK
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth Drake Circus Plymouth PL4 8AA UK
| | - Robert Clough
- Analytical Research Facility, School of Geography, Earth and Environmental Sciences, University of Plymouth Plymouth PL4 8AA UK
| | - Rachel Smith
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus Didcot OX11 0RQ UK
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth Drake Circus Plymouth PL4 8AA UK
- Visiting Professor, Department of Nutrition, Cihan University-Erbil Kurdistan Region Iraq
| |
Collapse
|
12
|
Fleming A, Cursi L, Behan JA, Yan Y, Xie Z, Adumeau L, Dawson KA. Designing Functional Bionanoconstructs for Effective In Vivo Targeting. Bioconjug Chem 2022; 33:429-443. [PMID: 35167255 PMCID: PMC8931723 DOI: 10.1021/acs.bioconjchem.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The progress achieved
over the last three decades in the field
of bioconjugation has enabled the preparation of sophisticated nanomaterial–biomolecule
conjugates, referred to herein as bionanoconstructs, for a multitude
of applications including biosensing, diagnostics, and therapeutics.
However, the development of bionanoconstructs for the active targeting
of cells and cellular compartments, both in vitro and in vivo, is challenged by the lack of understanding
of the mechanisms governing nanoscale recognition. In this review,
we highlight fundamental obstacles in designing a successful bionanoconstruct,
considering findings in the field of bionanointeractions. We argue
that the biological recognition of bionanoconstructs is modulated
not only by their molecular composition but also by the collective
architecture presented upon their surface, and we discuss fundamental
aspects of this surface architecture that are central to successful
recognition, such as the mode of biomolecule conjugation and nanomaterial
passivation. We also emphasize the need for thorough characterization
of engineered bionanoconstructs and highlight the significance of
population heterogeneity, which too presents a significant challenge
in the interpretation of in vitro and in
vivo results. Consideration of such issues together will
better define the arena in which bioconjugation, in the future, will
deliver functional and clinically relevant bionanoconstructs.
Collapse
Affiliation(s)
- Aisling Fleming
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - James A Behan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yan Yan
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zengchun Xie
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
López-Mayán JJ, Del-Ángel-Monroy S, Peña-Vázquez E, Barciela-Alonso MC, Bermejo-Barrera P, Moreda-Piñeiro A. Titanium dioxide nanoparticles assessment in seaweeds by single particle inductively coupled plasma - Mass spectrometry. Talanta 2022; 236:122856. [PMID: 34635240 DOI: 10.1016/j.talanta.2021.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 10/20/2022]
Abstract
In this study, a first attempt for isolating and determining (characterising) background levels of titanium dioxide nanoparticles (TiO2 NPs) in seaweed has been developed by using single particle inductively coupled plasma - mass spectrometry (SP-ICP-MS). Seaweeds were processed using an optimised ultrasound assisted extraction (UAE) procedure based on tetramethylammonium hydroxide (TMAH) before dilution and SP-ICP-MS analysis. The effect of the TMAH percentage in the extracting solution, as well as the volume of extracting solution and sonication (extraction) time, has been fully assessed. Additional experiments also showed that TiO2 NPs were quantitatively released from the seaweed matrix in one UAE step since the analysis of residues gave TiO2 NPs concentrations lower than the limit of quantification (LOQ) of the method. Validation of the method with 50 and 100 nm TiO2 NPs (10 μg L-1 as Ti) showed good analytical recovery (115% and 112% for 50 and 100 nm TiO2 NPs, respectively), and good reproducibility (2% for size and 16% for number of TiO2 NPs). Experiments regarding TiO2 NPs stability showed that the extracted NPs are stable since there were not changes on the number of TiO2 NPs and TiO2 NPs size distributions when exposing TiO2 NPs standards to the optimised extractive conditions.
Collapse
Affiliation(s)
- Juan José López-Mayán
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Sergio Del-Ángel-Monroy
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain; Facultad de Estudios Superiores Zaragoza, Universidad Nacional de México, Av. Guelatao 66, Ejército de Oriente, Iztapalapa, 09230, Ciudad de México, Mexico
| | - Elena Peña-Vázquez
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - María Carmen Barciela-Alonso
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Jakubczak W, Haczyk-Więcek M, Pawlak K. Attomole-per Cell Atomic Mass Spectrometry Measurement of Platinum and Gold Drugs in Cultured Lung Cancer Cells. Molecules 2021; 26:7627. [PMID: 34946708 PMCID: PMC8703441 DOI: 10.3390/molecules26247627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we developed a strategy to determine atto- and femtomolar amounts of metal ions in lysates and mineralizates of cells (human non-small-cell lung carcinoma (NSCLC, A549) and normal lung (MRC-5)) exposed to cytotoxic metallo-drugs: cisplatin and auranofin at concentrations close to the half-maximal inhibitory drug concentrations (IC50). The developed strategy combines data obtained using biological and chemical approaches. Cell density was determined using two independent cell staining assays using trypan blue, calcein AM/propidium iodide. Metal concentrations in lysed and mineralized cells were established employing a mass spectrometer with inductively coupled plasma (ICP-MS) and equipped with a cross-flow nebulizer working in aspiration mode. It allowed for detecting of less than 1 fg of metal per cell. To decrease the required amount of sample material (from 1.5 mL to ~100 µL) without loss of sensitivity, the sample was introduced as a narrow band into a constant stream of liquid (flow-injection analysis). It was noticed that the selectivity of cisplatin accumulation by cells depends on the incubation time. This complex is accumulated by cells at a lower efficiency than auranofin and is found primarily in the lysate representing the cytosol. In contrast, auranofin interacts with water-insoluble compounds. Despite their different mechanism of action, both metallo-drugs increased the accumulation of transition metal ions responsible for oxidative stress.
Collapse
Affiliation(s)
| | | | - Katarzyna Pawlak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (W.J.); (M.H.-W.)
| |
Collapse
|
15
|
Bolaños K, Sánchez-Navarro M, Giralt E, Acosta G, Albericio F, Kogan MJ, Araya E. NIR and glutathione trigger the surface release of methotrexate linked by Diels-Alder adducts to anisotropic gold nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112512. [PMID: 34857291 DOI: 10.1016/j.msec.2021.112512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
The administration and controlled release of drugs over time remains one of the greatest challenges of science today. In the nanomaterials field, anisotropic gold nanoparticles (AuNPs) with plasmon bands centered at the near-infrared region (NIR), such as gold nanorods (AuNRs) and gold nanoprisms (AuNPrs), under laser irradiation, locally increase the temperature, allowing the release of drugs. In this sense, temporally controlled drug delivery could be promoted by external stimuli using thermo-reversible chemical reactions, such as Diels-Alder cycloadditions from a diene and a dienophile fragment (compound a). In this study, an antitumor drug (methotrexate, MTX) was linked to plasmonic AuNPs by a Diels-Alder adduct (compound c), which after NIR suffers a retro-Diels-Alder reaction, producing release of the drug (compound b). We obtained two nanosystems based on AuNRs and AuNPrs. Both nanoconstructs were coated with BSA-r8 (Bovine Serum Albumin functionalized with Arg8, all-D octa arginine) in order to increase the colloidal stability and promote internalization of the nanosystems on HeLa and SK-BR-3 cells. In addition, the presence of BSA allows protecting the cargo from being released on the extracellular environment and promotes the photothermal release of the drug in the presence of glutathione (GSH). The nanosystems' drug release profile was evaluated after NIR irradiation in the presence and absence of glutathione (GSH), showing a considerable increase of drug release when NIR light and glutathione were combined. This work broadens the range of possibilities of using two complementary strategies for the controlled release of an antitumor drug from AuNRs and AuNPrs: the photothermal cleavage of a thermolabile adduct controlled by an external stimulus (laser irradiation), complemented with the use of the intracellular metabolite GSH.
Collapse
Affiliation(s)
- Karen Bolaños
- Advanced Center of Chronic Diseases, Santiago, Chile; Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine-Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine-Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Gerardo Acosta
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Spain
| | - Fernando Albericio
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Spain; School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Marcelo J Kogan
- Advanced Center of Chronic Diseases, Santiago, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
16
|
Nanoparticle Delivery in Prostate Tumors Implanted in Mice Facilitated by Either Local or Whole-Body Heating. FLUIDS 2021; 6. [PMID: 34651038 PMCID: PMC8513505 DOI: 10.3390/fluids6080272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work discusses in vivo experiments that were performed to evaluate whether local or whole-body heating to 40 °C reduced interstitial fluid pressures (IFPs) and enhanced nanoparticle delivery to subcutaneous PC3 human prostate cancer xenograft tumors in mice. After heating, 0.2 mL of a previously developed nanofluid containing gold nanoparticles (10 mg Au/mL) was injected via the tail vein. The induced whole-body hyperthermia led to increases in tumor and mouse body blood perfusion rates of more than 50% and 25%, respectively, while the increases were much smaller in the local heating group. In the whole-body hyperthermia groups, the IFP reduction from the baseline at the tumor center immediately after heating was found to be statistically significant when compared to the control group. The 1 h of local heating group showed IFP reductions at the tumor center, while the IFPs increased in the periphery of the tumor. The intratumoral gold nanoparticle accumulation was quantified using inductively coupled plasma mass spectrometry (ICP-MS). Compared to the control group, 1 h or 4 h of experiencing whole-body hyperthermia resulted in an average increase of 51% or 67% in the gold deposition in tumors, respectively. In the 1 h of local heating group, the increase in the gold deposition was 34%. Our results suggest that 1 h of mild whole-body hyperthermia may be a cost-effective and readily implementable strategy for facilitating nanoparticle delivery to PC3 tumors in mice.
Collapse
|
17
|
Cunningham C, de Kock M, Engelbrecht M, Miles X, Slabbert J, Vandevoorde C. Radiosensitization Effect of Gold Nanoparticles in Proton Therapy. Front Public Health 2021; 9:699822. [PMID: 34395371 PMCID: PMC8358148 DOI: 10.3389/fpubh.2021.699822] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
The number of proton therapy facilities and the clinical usage of high energy proton beams for cancer treatment has substantially increased over the last decade. This is mainly due to the superior dose distribution of proton beams resulting in a reduction of side effects and a lower integral dose compared to conventional X-ray radiotherapy. More recently, the usage of metallic nanoparticles as radiosensitizers to enhance radiotherapy is receiving growing attention. While this strategy was originally intended for X-ray radiotherapy, there is currently a small number of experimental studies indicating promising results for proton therapy. However, most of these studies used low proton energies, which are less applicable to clinical practice; and very small gold nanoparticles (AuNPs). Therefore, this proof of principle study evaluates the radiosensitization effect of larger AuNPs in combination with a 200 MeV proton beam. CHO-K1 cells were exposed to a concentration of 10 μg/ml of 50 nm AuNPs for 4 hours before irradiation with a clinical proton beam at NRF iThemba LABS. AuNP internalization was confirmed by inductively coupled mass spectrometry and transmission electron microscopy, showing a random distribution of AuNPs throughout the cytoplasm of the cells and even some close localization to the nuclear membrane. The combined exposure to AuNPs and protons resulted in an increase in cell killing, which was 27.1% at 2 Gy and 43.8% at 6 Gy, compared to proton irradiation alone, illustrating the radiosensitizing potential of AuNPs. Additionally, cells were irradiated at different positions along the proton depth-dose curve to investigate the LET-dependence of AuNP radiosensitization. An increase in cytogenetic damage was observed at all depths for the combined treatment compared to protons alone, but no incremental increase with LET could be determined. In conclusion, this study confirms the potential of 50 nm AuNPs to increase the therapeutic efficacy of proton therapy.
Collapse
Affiliation(s)
- Charnay Cunningham
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa.,Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Maryna de Kock
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Monique Engelbrecht
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa.,Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Xanthene Miles
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa
| | - Jacobus Slabbert
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa
| | - Charlot Vandevoorde
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa
| |
Collapse
|
18
|
Fernández-Trujillo S, Jiménez-Moreno M, Ríos Á, Martín-Doimeadios RDCR. A simple analytical methodology for platinum nanoparticles control in complex clinical matrices via SP-ICP-MS. Talanta 2021; 231:122370. [PMID: 33965035 DOI: 10.1016/j.talanta.2021.122370] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 11/30/2022]
Abstract
A simple method based on the use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) has been proposed, for the first time, for the study of platinum nanoparticles (PtNPs) in complex clinical matrices such as human urine and blood serum. Critical parameters for signal acquisition were optimized to achieve a correct and simultaneous sizing and counting (particle-based in particles L-1 and mass-based in ng L-1) of 50 and 70 nm PtNPs. Different reagents, as tetramethylammonium hydroxide (TMAH) and/or Triton X-100, and concentrations have been tested to ensure an adequate stabilization and extraction of PtNPs. Finally, TMAH at 1% is demonstrated to be the best reagent to extract the NPs guaranteeing their integrity. No heating or any additional treatment was required, which allows sample preparation, and the overall process, to be simple and fast. Good precisions for size (2% RSD) and particle number and mass concentrations (<1% RSD), and limits of detection of 21.6 nm and 1.9 × 105 particles L-1 were reported. The influence of matrix on the determination of PtNP sizes and number- and mass-based concentrations was evaluated. Particle sizes were in all cases in accordance with values determined by TEM or SEM, whereas recoveries of PtNPs in terms of concentration ranged between 92 and 101%. The stability of PtNP characteristics after 24 h was specifically studied in human urine spiked with PtNPs. Statistically significant differences were only reported for the particle number concentrations of 50 nm PtNPs in female urine samples. The present work will be relevant to understand the behaviour of PtNPs in body fluids and to take appropriate actions in future (pre)clinical trials.
Collapse
Affiliation(s)
- Sergio Fernández-Trujillo
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - María Jiménez-Moreno
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Rosa Del Carmen Rodríguez Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain.
| |
Collapse
|
19
|
Gerosa C, Crisponi G, Nurchi VM, Saba L, Cappai R, Cau F, Faa G, Van Eyken P, Scartozzi M, Floris G, Fanni D. Gold Nanoparticles: A New Golden Era in Oncology? Pharmaceuticals (Basel) 2020; 13:E192. [PMID: 32806755 PMCID: PMC7464886 DOI: 10.3390/ph13080192] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
In recent years, the spectrum of possible applications of gold in diagnostics and therapeutic approaches in clinical practice has changed significantly, becoming surprisingly broad. Nowadays, gold-based therapeutic agents are used in the therapy of multiple human diseases, ranging from degenerative to infectious diseases and, in particular, to cancer. At the basis of these performances of gold, there is the development of new gold-based nanoparticles, characterized by a promising risk/benefit ratio that favors their introduction in clinical trials. Gold nanoparticles appear as attractive elements in nanomedicine, a branch of modern clinical medicine, which combines high selectivity in targeting tumor cells and low toxicity. Thanks to these peculiar characteristics, gold nanoparticles appear as the starting point for the development of new gold-based therapeutic strategies in oncology. Here, the new gold-based therapeutic agents developed in recent years are described, with particular emphasis on the possible applications in clinical practice as anticancer agents, with the aim that their application will give rise to a new golden age in oncology and a breakthrough in the fight against cancer.
Collapse
Affiliation(s)
- Clara Gerosa
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Valeria Marina Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Luca Saba
- UOC Radiologia, AOU Cagliari, University of Cagliari, 09042 Cagliari, Italy;
| | - Rosita Cappai
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Flaviana Cau
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| | - Gavino Faa
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Peter Van Eyken
- Department of Pathology, Genk Regional Ziekenhuis, 3600 Genk, Belgium;
| | - Mario Scartozzi
- UOC Oncologia Medica, AOU Cagliari, University of Cagliari, 09042 Cagliari, Italy;
| | - Giuseppe Floris
- Pathologische Ontleedkunde K.U. Leuven, 3000 Leuven, Belgium;
| | - Daniela Fanni
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| |
Collapse
|
20
|
Abdelkhaliq A, van der Zande M, Undas AK, Peters RJB, Bouwmeester H. Impact of in vitro digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications. Nanotoxicology 2019; 14:111-126. [PMID: 31648587 DOI: 10.1080/17435390.2019.1675794] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanomaterials, especially silver nanoparticles (AgNPs), are used in a broad range of products owing to their antimicrobial potential. Oral ingestion is considered as a main exposure route to AgNPs. This study aimed to investigate the impact of the biochemical conditions within the human digestive tract on the intestinal fate of AgNPs across an intestinal in vitro model of differentiated Caco-2/HT29-MTX cells. The co-culture model was exposed to different concentrations (250-2500 µg/L) of pristine and in vitro digested (IVD) AgNPs and silver nitrate for 24 h. ICP-MS and spICP-MS measurements were performed for quantification of total Ag and AgNPs. The AgNPs size distribution, dissolution, and particle concentration (mass- and number-based) were characterized in the cell fraction and in the apical and basolateral compartments of the monolayer cultures. A significant fraction of the AgNPs dissolved (86-92% and 48-70%) during the digestion. Cellular exposure to increasing concentrations of pristine or IVD AgNPs resulted in a concentration dependent increase of total Ag and AgNPs content in the cellular fractions. The cellular concentrations were significantly lower following exposure to IVD AgNPs compared to the pristine AgNPs. Transport of silver as either total Ag or AgNPs was limited (<0.1%) following exposure to pristine and IVD AgNPs. We conclude that the surface chemistry of AgNPs and their digestion influence their dissolution properties, uptake/association with the Caco-2/HT29-MTX monolayer. This highlights the need to take in vitro digestion into account when studying nanoparticle toxicokinetics and toxicodynamics in cellular in vitro model systems.
Collapse
Affiliation(s)
- Ashraf Abdelkhaliq
- Wageningen Food Safety Research, Wageningen, The Netherlands.,Division of Toxicology, Wageningen University, Wageningen, The Netherlands.,Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | | | - Anna K Undas
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Ruud J B Peters
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|