1
|
Burg A, Yadav KK, Meyerstein D, Kornweitz H, Shamir D, Albo Y. Effect of Sol-Gel Silica Matrices on the Chemical Properties of Adsorbed/Entrapped Compounds. Gels 2024; 10:441. [PMID: 39057464 PMCID: PMC11276444 DOI: 10.3390/gels10070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
The sol-gel process enables the preparation of silica-based matrices with tailored composition and properties that can be used in a variety of applications, including catalysis, controlled release, sensors, separation, etc. Commonly, it is assumed that silica matrices prepared via the sol-gel synthesis route are "inert" and, therefore, do not affect the properties of the substrate or the catalyst. This short review points out that porous silica affects the properties of adsorbed/entrapped species and, in some cases, takes an active part in the reactions. The charged matrix affects the diffusion of ions, thus affecting catalytic and adsorption processes. Furthermore, recent results point out that ≡Si-O. radicals are long-lived and participate in redox processes. Thus, clearly, porous silica is not an inert matrix as commonly considered.
Collapse
Affiliation(s)
- Ariela Burg
- Chemical Engineering Department, Sami Shamoon College of Engineering, Beer-Sheva 84100, Israel; (A.B.); (K.K.Y.)
| | - Krishna K. Yadav
- Chemical Engineering Department, Sami Shamoon College of Engineering, Beer-Sheva 84100, Israel; (A.B.); (K.K.Y.)
| | - Dan Meyerstein
- Chemical Sciences Department and The Radical Research Center, Ariel University, Ariel 40700, Israel;
- Chemistry Department, Ben-Gurion University, Beer-Sheva 8410501, Israel
| | - Haya Kornweitz
- Chemical Sciences Department and The Radical Research Center, Ariel University, Ariel 40700, Israel;
| | - Dror Shamir
- Nuclear Research Centre Negev, Beer-Sheva 9001, Israel
| | - Yael Albo
- Chemical Engineering Department and The Radical Research Center, Ariel University, Ariel 40700, Israel
| |
Collapse
|
2
|
Manousi N, Anthemidis A. A continuous flow polyurethane foam solid phase microextraction lab-in-syringe platform for the automatic determination of toxic metals. Talanta 2024; 269:125492. [PMID: 38042142 DOI: 10.1016/j.talanta.2023.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
A novel fully automatic continuous flow polyurethane foam solid phase microextraction lab-in-syringe system for on-line sample preconcentration/separation has been developed as a front-end to flame atomic absorption spectrometry. For the first time lab-in-syringe in continuous flow has been adopted for the determination of toxic metals. The microextraction procedure was performed after on-line metal complexation with ammonium pyrrolidine dithiocarbamate, while the elution was conducted by 400 μL of methyl isobutyl ketone. The main chemical and hydrodynamic factors that affected the performance of the method were optimized using Cd and Pb as model analytes. For 90 s preconcentration time, the limits of the detection were 0.20 and 1.7 μg L-1 for Cd and Pb, respectively, while the enhancement factors were 79 for Cd and 150 for Pb. The relative standard deviation% values were lower than 2.8 % for all analytes. As a proof-of-concept the proposed system was used for environmental water analysis, providing relative recoveries within the range of 94.0 and 104.4 %. The Green Analytical Procedure Index and Blue Applicability Grade Index proved reduced environmental impact and high practicality for the proposed method.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
3
|
Samadifar M, Yamini Y, Khataei MM, Shirani M. Automated and semi-automated packed sorbent solid phase (micro) extraction methods for extraction of organic and inorganic pollutants. J Chromatogr A 2023; 1706:464227. [PMID: 37506462 DOI: 10.1016/j.chroma.2023.464227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In this study, the packed sorbent solid phase (micro) extraction methods from manual to automated modes are reviewed. The automatic methods have several remarkable advantages such as high sample throughput, reproducibility, sensitivity, and extraction efficiency. These methods include solid-phase extraction, pipette tip micro-solid phase extraction, microextraction by packed sorbent, in-tip solid phase microextraction, in-tube solid phase microextraction, lab-on-a-chip, and lab-on-a-valve. The recent application of these methods for the extraction of organic and inorganic compounds are discussed. Also, the combination of novel technologies (3D printing and robotic platforms) with the (semi)automated methods are investigated as the future trend.
Collapse
Affiliation(s)
- Mahsa Samadifar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mahboue Shirani
- Department of Chemistry, Faculty of Sciences, University of Jiroft, Jiroft, Iran
| |
Collapse
|
4
|
Gkouliamtzi AG, Tsaftari VC, Tarara M, Tsogas GZ. A Low-Cost Colorimetric Assay for the Analytical Determination of Copper Ions with Consumer Electronic Imaging Devices in Natural Water Samples. Molecules 2023; 28:4831. [PMID: 37375386 DOI: 10.3390/molecules28124831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports a new approach for the determination of copper ions in water samples that exploits the complexation reaction with diethyldithiocarbamate (DDTC) and uses widely available imaging devices (i.e., flatbed scanners or smartphones) as detectors. Specifically, the proposed approach is based on the ability of DDTC to bind to copper ions and form a stable Cu-DDTC complex with a distinctive yellow color detected with the camera of a smartphone in a 96-well plate. The color intensity of the formed complex is linearly proportional to the concentration of copper ions, resulting in its accurate colorimetric determination. The proposed analytical procedure for the determination of Cu2+ was easy to perform, rapid, and applicable with inexpensive and commercially available materials and reagents. Many parameters related to such an analytical determination were optimized, and a study of interfering ions present in the water samples was also carried out. Additionally, even low copper levels could be noticed by the naked eye. The assay performed was successfully applied to the determination of Cu2+ in river, tap, and bottled water samples with detection limits as low as 1.4 µM, good recoveries (89.0-109.6%), adequate reproducibility (0.6-6.1%), and high selectivity over other ions present in the water samples.
Collapse
Affiliation(s)
- Argyro G Gkouliamtzi
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Vasiliki C Tsaftari
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Tarara
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Z Tsogas
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Saleem Q, Shahid S, Rahim A, Bajaber MA, Mansoor S, Javed M, Iqbal S, Bahadur A, Aljazzar SO, Pashameah RA, AlSubhi SA, Alzahrani E, Farouk AE. A highly explicit electrochemical biosensor for catechol detection in real samples based on copper-polypyrrole. RSC Adv 2023; 13:13443-13455. [PMID: 37152558 PMCID: PMC10155604 DOI: 10.1039/d2ra07847c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Catechol is a pollutant that can lead to serious health issues. Identification in aquatic environments is difficult. A highly specific, selective, and sensitive electrochemical biosensor based on a copper-polypyrrole composite and a glassy carbon electrode has been created for catechol detection. The novelty of this newly developed biosensor was tested using electrochemical techniques. The charge and mass transfer functions and partially reversible oxidation kinetics of catechol on the redesigned electrode surface were examined using electrochemical impedance spectroscopy and cyclic voltammetry scan rates. Using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry, the characteristics of sensitivity (8.5699 μA cm-2), LOD (1.52 × 10-7 μM), LOQ (3.52 × 10-5 μM), linear range (0.02-2500 μM), specificity, interference, and real sample detection were investigated. The morphological, structural, and bonding characteristics were investigated using XRD, Raman, FTIR, and SEM. Using an oxidation-reduction technique, a suitable biosensor material was produced. In the presence of interfering compounds, it was shown that it was selective for catechol, like an enzyme.
Collapse
Affiliation(s)
- Qasar Saleem
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad Pakistan
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Sana Mansoor
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Ali Bahadur
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University Wenzhou 325060 China
| | - Samar O Aljazzar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University Makkah 24230 Saudi Arabia
| | - Samah A AlSubhi
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm Al-Qura University Makkah Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Abd-ElAziem Farouk
- Department of Chemistry, College of Science, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
6
|
Automated rapid solid-phase extraction system for separation and preconcentration of trace elements using carboxymethylated polyethyleneimine-type chelating resin. ANAL SCI 2023; 39:589-600. [PMID: 36749561 DOI: 10.1007/s44211-023-00277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/14/2023] [Indexed: 02/08/2023]
Abstract
An automated system for the rapid separation and preconcentration of trace elements was developed. Carboxymethylated polyethyleneimine 600 (CM-PEI600), which is a partially carboxymethylated polyethyleneimine with a molecular weight of 600 Da, was used as a chelating resin to quantitatively recover trace elements under high-flow-rate conditions. For accurately and precisely determining trace elements, even with a rough control of the sample and eluent flow volumes, an internal standardization technique was employed for the solid-phase extraction and separation. A recovery test of the deionized water-based sample solution was conducted using this system, and good results, with a recovery of 92% or higher, were obtained for 11 elements (Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Ti, V, and Zn). Eight elements present in certified groundwater and wastewater reference materials (ES-L-1 and EU-L) were separated and preconcentrated using this system. Almost all the determined values were within their tolerance intervals, and no significant differences were observed between the determined and certified values, demonstrating the validity of this method. The time required for the separation and preconcentration using approximately 100 mL of the sample solution was approximately 6.5 min, and theoretically, the system could be used to preconcentrate 17 samples in an hour because extraction and elution could be conducted simultaneously using two cartridges packed with the chelating resin. Using this system equipped with cartridges packed with CM-PEI600 resin, solid-phase extraction and the separation of multiple elements were performed simultaneously, automatically, and rapidly, enabling the accurate and precise determination of trace elements in environmental water and inorganic salts even by rapidly flowing the sample solutions using peristaltic pumps. Compared to NOBIAS Chelate PA-1, a commercially available chelating resin, the CM-PEI600 resin can recover trace elements even under an extremely high flow rate of approximately 50 mL min-1.
Collapse
|
7
|
Bibi K, Shah MH. Investigation of imbalances in essential/toxic metal levels in the blood of laryngeal cancer patients in comparison with controls. Biometals 2023; 36:111-127. [PMID: 36370262 DOI: 10.1007/s10534-022-00464-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Laryngeal carcinoma is one of the common types of head and neck cancer, with men being more likely than women to develop it. Diet, age, gender, smoking habits, and environmental factors play important roles in its development. The goal of this study was to ascertain if there were imbalances in essential and toxic trace metals owing to the initiation and progression of laryngeal cancer. Atomic absorption spectrometry was employed to quantify selected macroelements, and essential/toxic trace metals in blood of the cancerous patients and matching controls. Significantly higher concentrations of Pb, Cu, Fe, and Sr while substantially lower levels of Na, K, Ca, and Mg were observed in the cancer patients compared with the controls. Considerably disparate mutual relationships among the macroelements, and essential/toxic trace metals in the patients and controls were manifested by their correlation coefficients. Similarly, multivariate apportionment of the metal levels showed appreciably diverse associations and grouping in the patients and controls. The laryngeal cancer patients exhibited significant disparities in the metal levels among various sub-types (supraglottic, subglottic, transglottic, and glottic cancer) and stages (I, II, III, and IV) of the disease. Most of the metals revealed distinct differences based on the gender, habitat, age, eating preferences, and smoking habits in both donor groups. Overall, the study demonstrated significant imbalances among the macroelements, and essential/toxic trace metal levels in the blood of laryngeal cancer patients compared to the controls.
Collapse
Affiliation(s)
- Kalsoom Bibi
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
8
|
Imamoglu M. Novel determination of copper(II) in natural waters by solid-phase extraction (SPE) flow-injection (FI) flame atomic absorption spectrometry (FAAS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2092632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mustafa Imamoglu
- Sciences and Arts Faculty, Chemistry Department, Sakarya University, Sakarya, Turkey
| |
Collapse
|
9
|
Manousi N, Kabir A, Furton KG, Stathogiannopoulou M, Drosaki E, Anthemidis A. An automatic on-line sol-gel pyridylethylthiopropyl functionalized silica-based sorbent extraction system coupled to flame atomic absorption spectrometry for lead and copper determination in beer samples. Food Chem 2022; 394:133548. [PMID: 35759833 DOI: 10.1016/j.foodchem.2022.133548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/15/2022]
Abstract
A novel sol-gel pyridylethylthiopropyl functionalized silica-based sorbent was synthesized and utilized in an on-line column preconcentration system coupled with flame atomic absorption spectrometry for metal determination. The developed platform was used for the determination of Pb(II) and Cu(II) in beer samples, since there are limited automatic methods for routine analysis of alcoholic beverage. For a preconcentration time of 60 s, the calculated enhancement factors were 96 for Cu(II) and 130 for Pb(II). The limits of detection were 0.33 μg L-1 and 1.98 μg L-1 for Cu(II) and Pb(II), respectively. Moreover, the RSDs were less than 2.9% indicating good method precision. The method was successfully employed for the analysis of commercially available beers. The Cu(II) content of the samples was 1.6-21.8 μg L-1 and the Pb(II) content was 7.3-17.6 μg L-1. The developed manifold exhibited operational simplicity and good performance characteristics, indicating its potential utilization for routine analysis in beer industry.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33131, USA; Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka 1207, Bangladesh
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33131, USA
| | - Magdalini Stathogiannopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Drosaki
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
10
|
Saxena M, Sharma N, Saxena R. 4‐Aminosalicylic Acid Functionalized Multiwalled Carbon Nanotubes for Rapid Removal of Crystal Violet Dye from Wastewater Using Minicolumn. ChemistrySelect 2021. [DOI: 10.1002/slct.202102847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Megha Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110007 India
| | - Niharika Sharma
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110007 India
| | - Reena Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110007 India
| |
Collapse
|
11
|
Manousi N, Kabir A, Furton KG, Zachariadis GA, Anthemidis A. Multi-Element Analysis Based on an Automated On-Line Microcolumn Separation/Preconcentration System Using a Novel Sol-Gel Thiocyanatopropyl-Functionalized Silica Sorbent Prior to ICP-AES for Environmental Water Samples. Molecules 2021; 26:molecules26154461. [PMID: 34361614 PMCID: PMC8347399 DOI: 10.3390/molecules26154461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
A sol-gel thiocyanatopropyl-functionalized silica sorbent was synthesized and employed for an automated on-line microcolumn preconcentration platform as a front-end to inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the simultaneous determination of Cd(II), Pb(II), Cu(II), Cr(III), Co(II), Ni(II), Zn(II), Mn(II), Hg(II), and V(II). The developed system is based on an easy-to-repack microcolumn construction integrated into a flow injection manifold coupled directly to ICP-AES’s nebulizer. After on-line extraction/preconcentration of the target analyte onto the surface of the sorbent, successive elution with 1.0 mol L−1 HNO3 was performed. All main chemical and hydrodynamic factors affecting the effectiveness of the system were thoroughly investigated and optimized. Under optimized experimental conditions, for 60 s preconcentration time, the enhancement factor achieved for the target analytes was between 31 to 53. The limits of detection varied in the range of 0.05 to 0.24 μg L−1, while the limits of quantification ranged from 0.17 to 0.79 μg L−1. The precision of the method was expressed in terms of relative standard deviation (RSD%) and was less than 7.9%. Furthermore, good method accuracy was observed by analyzing three certified reference materials. The proposed method was also successfully employed for the analysis of environmental water samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (G.A.Z.)
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33131, USA; (A.K.); (K.G.F.)
| | - Kenneth G. Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33131, USA; (A.K.); (K.G.F.)
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (G.A.Z.)
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (G.A.Z.)
- Correspondence:
| |
Collapse
|